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Abstract

Real time series contains both linear and non-
linear properties. Its amplitude is usually contin-
uous value. For these reasons, we combine non-
linear and linear sub-predictors in a cascade form.
Here, we are emphasizing on the mechanism analysis
of our hybrid model and testing its performance in
the noisy environment. Computer simulations using
real-world and artificially genérated time series have
demonstrated the efficiency of the predictor and its

robustness for some noisy time series.

1 Introduction

The linear signal processing tools are insuffi-
cient to deal with nonlinear time series processing
(i.g. predicting, modeling, and characterizations).
On the other hand neural networks are useful for
They have

been applied successfully in a variety of signal and

nonlinear adaptive signal processing.

information processing fields. One of these fields is
the nonlinear time series prediction [1], [2], and oth-

ers. Neural networks were first applied to time series

prediction by Lapedes and Farber (1987) [1].

In practice, many of the time series include both
nonlinear and linear characteristics. Furthermore,
the amplitude of the time series is usually continu-
ous value. Therefore, it is useful to use a combined
structure of nonlinear and linear models to deal with
such signals. Other hybrid structures were proposed
in [2] and [5] for different tasks.

In this paper, we are emphasizing on the anal-
ysis of our hybrid prediction model proposed in
[6] and its operating mechanism theoretically and
through computer simulation of many other time se-
ries. Also, we will test the predictor performance
under the noisy environment condition using white

noise and different signal to noise ratios.

2 Neural and Linear Predic-

tor

Figure 1 (a) shows the hybrid predictor
structure. It consistst of two subpredictors,
nonlinear-subpredictor (NSP) which is represented
by mulilayer neural network and the linear -
subpredictor (LSP) which is represented by linear
filter.

The nonlinear prediction problem is reduced to a
pattern classification problem. A set of N past sam-
ples x(n-1),..,x(n-N) is transformed into the output,
which is the prediction of the next coming sample
x(n). So, as a first stage of the predictor, we employ
a multi-layer neural network (MLNN) which is good
for this kind of pattern mapping. It is called a Non-
linear Sub-Predictor(NSP) in this paper. It consists

of a sigmoidal hidden layer and a single linear out-
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Fig. 1.(a) Structure of the proposed hybrid
predictor, (b) The same detailed model for analysis.

put neuron. The NSP is trained by the supervised
learning algorithm using the sample x(n) to be pre-
dicted as the target. This means the NSP itself is
trained as a single predictor.

However, it is rather difficult to generate the con-
tinuous amplitude and to predict linear property us-
‘ing NSP. So, we employ a linear predictor after the
NSP in order to compensate for the linear relation
between the input samples and the target. A finite
impulse response (FIR) filter is used for this purpose,
which will be called a Linear Sub-Predictor(LSP).
The LSP is trained by using z(n) as a target too.
Thus, the same target is used for both the NSP and
the LSP. The propposed predictor will be employed
for one-step prediction task as an example. However,

it can be extended to more general prediction.

2.1 System equations of NSP

The output of the jth hidden neuron, y;(n) at the

nth time can be expressed by
N
wi(n) =3 wpr(n—i)+0;(n) (1)
i=1

yj(n) = fh(uj(n))’ j=12,..L, (2)

where wj; is the connection weight from the ith input
neuron to the jth hidden neuron and 8;(n) is its bias.
The activation function, f, used in the hidden layer

is a sigmoid function of the form:

1

fh(x): 1+e$p(_$)

3)

The output layer contains only one linear neuron.
Its output value at the nth time can be expressed

by:
u(n) = > wiy;(n) +6(n), (4)
J

yl(n) = fo(u(n)) = u(n) Q)

w; is the connection weight from the jth hidden neu-
ron to the output neuron.

The error of the output unit at the nth time is
ensp(n) = d(n) — yl(n) (6)

where d(n) is the desired response-at the nth time.

The instantaneous squared error of the network is

. ;

&(n) = Ee%VSP(n) (M
The cost function which has been used at NSP out-
put is the mean square error (M SE) value over an
epoch (See appendix A for LSP trainig algorithm).

It can be written as

M
1
MSEnsp = MZE(”), (8)
n=1
where M is the total number of samples in one
epoch. For conveneince, we normalize the MSE
vlaue by the input signal power and take the square

root as follows

NRMSE = \/MSE/P, (9)

In the case of using noisy time sereis, we define an
additional measure reference to compare the value of
NRMSE with that reference. This reference can be

expressed as

R=+/(MSE, + P,)/P,) (10)

where MSE is the prediction mean square error,
M SE; is the prediction mean square error for noise-
free signal, P,, the input power of the signal, and P,

is the noise power.
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2.2 Mechanism analysis of hybrid
predictor

Figure 1. (b) is the same hybrid model struc-
ture in which the LSP is drawn in easy way to under-
stand its mechanism and function inside the overall
model.

The output of NSP will be the input signal to
LSP. The LSP is an FIR filter of K-number of taps.
"Theoretically saying, The LSP coefficients will be
updated so as to one of these coeflicients, (wy = 1)
passes the NSP output to the overall output of the
predictor, and the other coefficients compensate for
the remaining (linear) part of the input time series.
This claim will be verified by simulation results.

Furthermore, we will investigate the contribution
of NSP and LSP in the overall output performance
of the hybrid predictor by computing the ratio of

there output powers. This ratio is
B =P /P, (11)

where, P, is the power of signal woyl(n), passed
from NSP to the overall output, and P» is the power
of signal y2 = wiyl(n — 1) + woyl(n — 2) + ... +
wgyl(n — K) at the LSP output which represents
the linear compensation term. By this ratio we can
determine the contribution of each sub-predictor in
the overall performance of the hybrid model. also
we can determine the dominance of linearty or non-
linearity in the input time series.

The weights of both sub-predictors are adjusted
on a pattern-by-pattern basis. The NSP trained by
the conventional Back-Propagation algorithm, and
the LSP is trained by the LMS algorithm.

2.3 Network size estimation

Nonlinearity of the time series are analyzed
based on the average variance o2 using a threshold
I=A,, 084, and 0.54,. Where A, is mean value
of the input time series [6]. Input dimension will
be taken to correspond to minimum o2. (See [6] for
more details). The NSP minimum hidden neurons
will be determined by try and error criteria. Fur-
thermore, the order of the LSP is determined taking

the prediction generalization into account.

3 Simulation Results
Hybrid Predictor

Using

3.1 Nonlinear time series

Sunspot.da&
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Fig. 2. Time series used in simulation.

Computer simulations have been done for a
one-step ahead prediction task for three examples;
Sunspot data, Lake data (LAKE.DAT), and Chaotic
data (CHAOS.DAT) shown in Figure 2. Data file of
Sunspot time series is downloaded from Santa Fe
public home page. LAKE.DAT and CHAOS.DAT
files are taken from a foppy disck acompanied with
[5].

Table 1 demonstrates the values of o2 and its

Table 1: Average Variance for Sunspot Example

Input Samples, N 8 9 10 12
I=054,, ©o2x107%]02|0 0 0
I=084,, o2x10~*|{14 [03 |01 |0
I=A,, o2x10~% | 23 | 4.84 [ 064 |0

relation with the number of input samples N.
Table 2 demonstrates the results of analysis of
the training data (T.D), the output of NSP, y1(n) in
Eq.(5), and the error signal, exysp(n) in Eq.(6) from
the point of view of the above nonlinearity analy-
sis method. All o2 values in this table are normal-
ized by their related powers. In this table we see
that the nonlinearity of NSP output is close to the
nonlinearity of the input signal, training data. On

the other hand, the nonlinearity of the difference be-

-521-



Table 2: Average variance for sunspot example,

o2x10™%,
Input Samples, N 2 3 4 5 12
(T.D) I=0bA, |44 126 16([09]0
(y1) I=0bA, |52]32]123|06]|0
(ewsp) I=05A; 15 |0 0 0 0
(T.D) I1=084, 169142332210
(v1) I=084, (734936230
(ensp) I=08A, 23 | 2 0 0 0
(T.D) I1=A; 821564113110
(y1) I=A4, 8.6 |6 47132 |0
(ensp) I=A; 26 |5 0 0 0
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Fig. 3. Coefficients of LSP after training process.

tween them, nonlinearity of ey sp(n) is well reduced.
This means the nonlinearity of the input signal can
be predicted by NSP, and the remaining part has
mainly linear property.

Figure 3. (a) and (b) show the values of the
LSP coefficients after training using Sunspot data
and Chaos data respectively. The following two
vectors, W1, W2 contain the values of LSP coef-
ficients after training process for Sunspot data and
CHAOS data depicted in Figure 3 (a) and (b) re-
spectively, W1 =(1.0266, 0.0079, -0.0215, 0.0772,
-0.0651, 0.0502, 0.0479, -0.0885, 0.0951, -0.0162),
and W2 =(1.0065, -0.0481, 0.0197, 0.0140, 0.0056,
0.0171, 0.0123, 0.0117, 0.0109, 0.0197, 0.0076,
0.0066, 0.0164, -0.0019, 0.0034). From this result,
it is clear that one of the LSP coeflicients (wy) is
updated to reach the value 1, so it can pass the NSP

output to the overall output. The other coefficeints
compensate for the linear property of the input time
series. This result supports the theoretical discus-

sion in Sec. 2.2.

4 Comparison with Other

Models

In [6], our hybrid predictor has been compared
with other models. Briefly, these models are multi-
layer neural network with direct linear connections
(MLNN-WDC) from its input layer to the output,
sandwich model, and reverse order model. The sand-
wich model is that model in which the LSP part is
divided into two parts and the NSP is sandwiched
between them. Reverse order model is that model
in which the LSP and NSP are arranged in reverse
order compared with the proposed predictor[6].

Here, we will compare simulation results of the
hybrid model with that of using other models which
are linear predictor using FIR model and the conven-
tional multilayer neural network, MLNN. The over-
all performance measure which will be used here is
the NRMSE Eq. (9).

4.1 Simulation for comparison among
different models

The results of computer simulation using the
three noise-free time series are tabulated in Table
3. In this table, the hybrid model has the smallest
NRMSE. However, in case of Lake data there is no
big difference between linear predicror and the hy-
brid predictor. Although, the hybrid predictor still
has the smallest N RM SE for noise-free Lake data,
it may be better to use linear predictor for Lake data
according to the simulation of noisy Lake data in the
next section.

Figure 4 shows the output waveforms of the dif-
ferent models in the testing phase where the other
part of the Chaotic data from sample 163 to 188 are
used.

From these simulation results, It is obvious that
the proposed model has a superiority over other
models. It has a smaller residual error in learning
and testing phases and best data fitting for nonlin-

ear time series prediction.
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Table 3: Comparison of prediction NRMSE values

among Different Models in case of noise-free time

series.

Model Name/Signal Sunspot | Lake Chaos
Linear predictor(FIR) | 0.3831 0.0880 | 0.4400
MLNN predictor 0.2013 0.0892 | 0.1232
Proposed model 0.1684 0.0865 | 0.1024

Prediction of chaotic time series
1.2 T T T T T T T
____ Original <evemeen. Proposed model
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4. Chaotic Ex.: Prediction of 38 of CHAOS.DAT
from 163 to 200.

5 Robustness of Hybrid Pre-
dictor for Noisy Time Series

In this section we will test our model using the
noisy data with different signal to noise ratios. In or-
der to have a model robustness, the prediction MSE
of the signal without noise plus the noise power must
be the upper limit of the prediction MSE of the noisy
signal. This condition is verified in our predictor for
the chaotic time series example.” For high signal to
noise ratios, the predictor can work well, however,
for lower signal to noise ratios (high noise power),
this case represents a common problem for any pre-
dictor.

The predictor is trained using a noisy data and
noise-free target in the learning phase. In test phase,
the input to predictor is noisy and the reference sig-
nal is noise-free.

Using noisy data in the learning phase in the hy-
brid predictor gives a good solution to overcome the
noise effect on the prediction performance. This so-

lution is that, in the NSP stage the input potential

distribution to hidden neurons will be expanded and
shifted toward the saturation regions of the sigmoid
function. This will reduce the predictor sensitivity
to noise effect and improves its performance. This
point will be demonstrated in the next subsection.
For noisy time series, we will use an additional mea-
sure reference which is R expressed by Eq.(iO).
Table 4 demonstrates the values of NRM SE and
R of the hybrid predictor for chaotic time series for
different signal to noise ratios, S/N. Three cases
are taken into account, (1), (2), and (3) corresopond
to S/N = 35.5dB, 29.5dB, and 23.5dB respectively.
White noise is employed in our simulations, 10 noise-
data sets are used every one epoch and the avarage
is taken over 10 to calculate the average MSE. The

Table 4: NRM SE of the noisy chaotic time series.

Signal to noise ratio S/N | NRMSE | R

(1) S/N = 35.5dB 0.0684 0.1042
(2) S/N = 29.5dB 0.0929 0.1081
(3) S/N =23.5dB 0.1999 0.1226

Table 5: Coﬁlparison of prediction NRMSE values
among Different Models in case of noisy time series,
S/N = 29.5dB .

Model Name/Signal Sunspot | Lake Chaos
Linear predictor(FIR) | 0.2343 0.1339 | 0.4396
MLNN predictor 0.2296 0.0950 | 0.0944
Proposed model 0.1864 0.0970 | 0.0930

first two cases show that the N RM SE of noisy time
series is smaller than the measure reference R. This
means the performance of the hybrid predictor does
not affected by these two noise levels, however, by
increasing the noise level in case (3), this will affect
the performance.

Figure 5 shows the input potential distribution
of two hidden neurons of NSP in the case of using
noise-free and noisy chaotic data. Figure 5 (a) and
(b) is the input potential distribution of the first hid-
den neuron using noise-free and noisy data respec-
tively. It is obvious that in case of using noisy time
series Figure 5 (b), the input potential has been ex-
panded (compared with Figure 5 (a)) mainly to the

left saturation region of the sigmoid function used
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Fig. 5. Histogram of the input potential to two
hidden nodes of the NSP for both cases; noisy signal
and noise-free one. Input potentials of hidden node
1 are represented by (a), and (b) for noise-free and
noisy data respectively.(d), and (e) for hidden node
2. (c) is the sigmoid function plot.

to calculate the neuron output. This make the hid-
den neuron output does not strongly affected by the
noisy data. Other phenomena appears in the second
hidden neuron, that is, its input potential distribu-
tion in case of noisy data has been shifted to the
near of saturation region of the sigmoid function in
Figure 5 (e) compared with that distribution in case
of noise-free data depicted in Figure 5 (d). Sigmoid
function plot is depicted in Figure 5 (c).

To show the performance of the hybrid predic-
tor for other time series, Table 5 shows NRMSE
for the above three time series, Sunspot, Lake, and
Chaos data. For example, at S/N = 29.5dB and
in csae of using Sunspot and Chaos data, the pro-
posed hybrid predictor has a smaller NRMSFE than
both FIR and MLNN predictors. However, in case
of Lake data, FIR has a slightly better performance
than MLNN, but the proposed model still the best.

By computing S, the ratio of NSP to LSP out-
put powers Eq.(11). This ratio is calculated for the
three time series. Its values are 177.1,35.8,196 for
Sunspot, Lake, and Chaos data respectively. In the
case of Lake data, we notice that NSP performance is
not so good and LSP has a larger contribution than
the case of Sunspot and Chaos data. This means

that the linear property is dominant in Lake data.

Ofcourse, this depends on the time series character-

istics.

6 Conclusions

A mechanism analysis of the nonlinear hybrid
predictor connecting the multi-layer neural network
(NSP) and the FIR filter (LSP) in a cascade form
has been demonstrated. The hybrid predictor has
demonstrated its efficiency through computer simu-
lations of different kinds of noise-free and noisy time
series. Its performance in the noisy data environ-

ment does not affected by the low power white noise.
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