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Abstract. In this paper, a hybrid model of multy-layer neural network
combined with a finite-impulse-response filter is proposed for a nonlinear
time series prediction. We introduce an important analysis of the input
sequence to determine the effective minimum combination of the input
samples and hidden neurons. Through computer simulations, using both
sunspot and €eomputer generated time series, the proposed analysis has
shown its effectiveness and the proposed predictor has demonstrated its
superiority. It is of a faster convergence and smaller residual error than
the conventional nonlinear predictor.

1 Introduction

It is well known that linear filters are still insufficient to deal with a nonlinear
prediction task. So, a number of neural network structures have been proposed
for this purpose due to their nonlinear properties built into their structures [1],
[2], [3], [4], and others. In [1], a multy-layer neural network was used to predict
the sunspot time series and its results were encouragable. The network input
dimension was used to estimate the minimum network size as discussed in [5].
Although, the network size was optimized, the convergence time was very long.
In [2], the convergence speed is appreciated. But, it was on the expense of the
network size. It was a large size, complex numbered network and with local feed-
back in its hidden neurons and its computer simulation made only for a discrete
amplitude signal.

Here we propose a cascade structure of two subsections :
(1) A nonlinear subsection (NSS), which consists of a multi-layer (ML) neural
network with a single hidden layer.
(2) A linear subsection (LSS), which is a finite-impulse-response (FIR) filter.

The cascade structure was first proposed in [3] using a pipelined recurrent
neural network for speech signal prediction trained by real-time recurrent learn-
ing algorithm.
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2 A Cascade Structure of Neural Network-FIR Predictor

2.1 Network Structure

Figure 1 shows the proposed predictor structure. The NSS performs a nonlinear
mapping from the input space into an intermediate space to extract the non-
linear features of the input sequence. The LSS performs a linear mapping or
compensation from the intermediate space to the output space. In the interme-
diate space produced by the NSS a degree of the signal nonlinearity is reduced
compared with the original input signal.

x(k)

Linear Subsection

Input Hidden OQutput
Layer Layer  Layer Sigmoid Linear
Neuron Neuron

Fig. 1. Structure of the proposed predictor

2.2 Network Operation and Learning Algorithms

The past | samples of the input signal , x(k-1),x(k-2),...x(k-1) are applied to the
NSS and the current sample, x(k) is used as the desired response for both the
NSS and the LSS. The LSS is a (g-1)th-order FIR filter. The weights of both
subsections are simultaneously adjusted. The NSS trained by the real-numbered
Back-Propagation algorithm, and the LSS is trained by the normalized LMS
algorithm.

3 Input Sequence Analysis

We introduce a theoretical analysis for the input sequence to obtain the effective
minimum combination of input samples and hidden neurons which enables the
network to achieve its convergence faster than the other networks of the same
network size.

ks
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3.1 Network Convergence Difficulties

Let us report the difficulties affecting the convergence property of the network.
Here we consider two cases :

Case 1: Impossible Mapping

Let the following mapping expression to be:
Xy = z(k), k=1,2,...,i,...,N (1)

where Xy = (z(k — 1),z(k — 2),...,z(k — l)), represents the kth pattern which
will be mapped onto z(k), [ is the number of the samples in the input, and N is
the total number of patterns in one epoch. Again let:

Xi = 2(3) @)
If the above two different mappings given by Eqgs (1) and (2) satisfy the following
relation:

X = X, z(k) # z(1). (3)

Then, these two mappings are impossible, and if such mappings are exist, the
network will fail to converge at all.

Case 2 : Difficult Mapping

There is another case we will call it a difficult mapping. It can be expressed as:

Xi = X;, z(k) # 2(i) (4)
In this case the two patterns are similar to each other. Such difficult mappings
make the learning process so hard to converge. Although the convergence may
be possible, but it may often take a very long time.
Let us express the mapping similarity condition as:

d=| Xy - X; |<1 (5)
where I is a threshold value . Its value will be determined by experience as :
0<I<Ag (6)

where Ag is the average value of the input time series .

Here, we consider I to take two values I1, I2 , where ( I1 < I2 ). Thus the
following two degrees of similarity are discussed :

(1) High degree of similarity: X differs from X; by I1 and z(k) # z(i). We
call it as the more difficult mapping case.

(2) Slightly high degree of similarity: X} differs from X;, by I2. We will call
it as a less difficult mapping case. It may represent a true difficulty in some
cases depending on the input sequence itself . For long length time series, it is
necessary to take a larger threshold values I into account.
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3.2 Estimation of the Input Dimension

To determine the effective input dimension based on the above analysis, we
can say : The effective number of input samples is that number at which the
network does not see the similar mapping problem. To do so, we compute the
variance of the output of similar mappings. The number corresponds to the
minimum average value of this variance will represent the estimated number of
input dimension.

Let us express the following equations :

G
ﬂzl/G*Zx(g), (7)

_ G
o2 = 1/T[1/G* Y (z(g) — )], (8)

where G is the total number of similar mappings, and z(g) is the sample to be
predicted of gth similar mapping. p is the mean and o2 is the average value of
the variance of the output of similar mappings respectively.

Table 1, Table 2, and Table 3 demonstrate the calculations of the average val-
ues of the variance of the output of similar mappings for the computer simulation
examples (See Sec. 4.1). From these tables we can determine the minimum input
samples. The effective number of hidden neurons is determined by trial. There-
fore, we can obtain the minimum effective combination of the input samples and
the hidden neurons.

4 Computer Simulation

4.1 Nonlinear Time Sequences

Computer simulations have been done for both discrete and continous amplitude
signals. First, for a discrete amplitude signal used in [2], ( z(k) = (Eﬁil z(k —
n)) mod N). We have taken two examples (easy and difficult examples) at N =
3,M = 5,andN = 7,M = 3 respectively. Network input dimension has been
determined based on the above analysis for both easy and difficult examples as
3 and 6 respectively (See Table 1, and Table 2 ). Then the NSS size for both
examples are determined as (3-2-1) and (6-7-1) respectively. Also we have used
the yearly sunspot data from 1700 through 1920 for training as it has been used
in [1]. Our network input dimension is determined based on our analysis (see
Table 3). It is the same as that determined in [5] and used by [1].
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4.2 Simulation Results

Figures 2, and 3 show that the proposed predictor has achieved comparable
results to those obtained in [2], and the networks size have an advantage of a
very small size over their ones used in [2].

Figure 4 shows that using the LSS as a second stage after NSS with the
optimum size speeds up the convergence and decreases the residual error not
only compared with a conventional ML neural network [1] but also for the ML
network whith direct connections between each input unit and its output [4].

Table 1. Easy Example Analysis, I < Ag

No.of Input Samples |2 3
d<lI 02]0.5474|0

Table 2. Difficult Example Analysis, I1 < 50%Ag, and 12 < 80%Ag

No.of Input Samples 2 3 4 5 6
d<d1 0212.9321(0.5127|0 0 0
d<1I2 02(3.4569(1.8187(1.1399(0.0312{0

Table 3. Sunspot Example Analysis, 1 < 50%Ag, and I2 < 80%Ag

No.of Input Samples |2 3 4 5 6 8 9 10 12
d<Il ¢2|0.0108]0.0070{0.00500.0030/0.00182{0.00002{0 0 0
d<1I2 02|0.0164/0.0110/0.0084{0.0062/0.00452{0.0014 |0.00003{0.00001|0

5 Conclusion

A cascade structure of ML a neural network and an FIR filter has been proposed
for nonlinear time series prediction. Some important analysis for the input se-
quence properties and their relation to the network size and the convergence
speed has been investigated. Based on this analysis the minimum number of the
input samples has been determined. Our proposed predictor and analysis show
their effectiveness through the computer simulations. Faster convergence and
smaller residual error have been achieved by using the FIR as a second stage
after NSS.
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Fig. 2. Easy Example : (a) Few input samples and enough hidden neurons (b) Minimum
effective combination of input samples and hidden neurons.

Fig. 3. Difficult Example :

(a) Minimum effective combination of input samples and

hidden neurons (b) A network of the same but not proper size.
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Fig. 4. Sunspot Example : WDC means using only of the ML neural net. with linear
direct connections between its inputs and the output.



