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ABSTRACT

In order to achievefast convergence and | ess computation for adap-
tive filters, ajoint method combining awhitening process and the
NLMS agorithm is a hopeful approach. However, updaing the
filter coefficients is not synchronized with the reflection coeffi-
cient updating resulting in unstable behavior. We analyzed effects
of this, and proposed the “ Synchronized Learning Algorithm” to
solve this problem. Asynchronouserror between them isremoved,
and fast convergence and small residual error were obtained. This
algorithm, however, requires O(M L) computations, where M is
an adgptivefilter length, and L isalattice predictor length. Itisstill
large compared with the NLM S algorithm. In order to achieveless
computation while the fast convergence is maintained, a block im-
plementation method is proposed. The reflection coefficients are
updated at someperiod, and are fixed during thisinterval. The pro-
posed block implementation can be effectively applied to parallel
form adaptive filters, such as sub-band adaptive filters. Simulation
using speech signal shows that a learning curve of the proposed
block implementation a little slower than the our origina algo-
rithm, but can save the computational complexity.

1. INTRODUCTION

AsVLSI technology has been devel oped, adaptivefilters havebeen
applied to audio acoustic processing, control systems, telecommu-
nication sysems, and others. Among them, acoustic echo cancd-
lation and noise cancel ation are very important.

When very high-order adaptive filters are required, fast con-
vergence and less computation for real signds are very important.
Thenormalized LMS (NLMS) agorithm can beimplemented with
less computation. However, a very long time is required for con-
vergence. On the contrary, the recursive least squires (RLS) algo-
rithm can converge fast, at the expense of computational complex-
ity.

One method to overcome this problem is to join a whitening
process and the NLM S a gorithm. The whitening process includes
orthogond transform and linear prediction [1]-{6]. The former
method requires many frequency bands in order to realize good
orthogondization [1]{3]. A lattice predictor is used in the latter
method [1],[4],[5]. Order of the predictor is determined by that
of an equivalent AR model generating the input signd, which is
not so high compared with filter orders. However, in the origi-
nal adaptive lattice filters, updating the filter coefficients are not
synchronized with the reflection coefficient updating, resulting in
largeresidua errors.
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Fig. 1. A joint lattice and transversal filter (lattice predictor of
order L and adaptivefilter of order M)

This problem was analyzed, and the ” Synchronized Learning
Algorithm” was proposed. Thefilter coefficients are compensated
for taking the reflection coefficient updating into account [7],[8].
This method, however, requires O(M L) computaions, where M
is an adaptive filter length, and L is alattice predictor length. Al-
though L <« M is usudly satisfied, O(M L) is still unpractical
requirement.

In this paper, a block implementation method is proposed in
order to save computations. The reflection coefficients are updated
at some period, and they are fixed during this interval. Computer
simulation usingreal voicesignalswill bedemonstrated to confirm
usefulness of the proposed method.

2. JOINT LATTICE AND TRANSVERSAL ADAPTIVE
FILTER

2.1. Update of Reflection Coefficients

Figure 1 shows a block diagram of a joint lattice and transversal
filter. The 1st-stageis the lattice predictor and the 2nd-stageisthe
transversal adaptive filter.

fm(n) andby, (n) aretheforward and the backward prediction
errors, respectively, at the m-th stage and the n-th sample. They
are calculated by the following recursive formulas.

From) = e (m) + K bosn = 1) (@)
bn(n) =bm_1(n — 1) + km(n) fra1(n) 2
fo(n) =bo(n) = u(n) ()
m=1,...,L
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tm(n) isthe reflection coefficient at the m-th stage and the n-th
sample. * indicate complex conjugate. The reflection coefficient
km(n) is determined so as to minimize the following prediction
errors.

fom(n) = — 2Ebm—1(n — 1) fr_1(n)]
El[fm-1(n)? + [bm—1(n — 1)]?]
Furthermore, letting the numerator and the denominator be
—26n,m(n) and & p m(n), respectively, they are approximately
updated by

4

Knm(n) = (1—7) (vinm(n —1)
+bmo1(n — 1) fr_1(n)) (5)
kp,m(n) =(1—=7)(vkp,m(n—1)
+ (It (W) + [bm—s(n = D)) (6)
1>~v>0

2.2. Update of Filter Coefficients

The input signa for the transversal filter is the backward predic-
tion error by, (n). Letting b(n), w(n) and y(n) be the backward
prediction error, thefilter coefficients and the output, respectively,
they arerelated by

b(n) = [bo(n). ... bar—1(n)]” @
w(n) = [wo(n),..., w1 (n)]” ®
y(n) = w” (n)b(n). ©
T and H indicate Transposition and Hermitian transposition, re-

spectively.
Thefilter coefficients are updated by the NLMS algorithm as
shownin

e(n) = d(n) - y(n) (10)

«a isastep sizeand § isasmall positive number. The other algo-
rithms can be also employed.

2.3. Relation between Reflection and Filter Coefficient Update

km(n) is updated at the n-th sample, and will be used at the
(n + 1)-th sample. b(n) is obtained by using £,(n — 1), that
isthe previous values. Thefilter coefficients are updated at the r-
th sample using b(n) resulting w(n + 1), which will be used at
the (n + 1)-th sample.

In Eq.(11), e(n) and b(n) are obtained using « ,,(n — 1), not
£m(n). Thismeansthefilter coefficientsw (n + 1) canreducethe
cost function in collaboration with &, (n — 1), not with x,,, (n).
However, at the (n + 1)-th sample, w(n + 1) is combined with
£m(n) to generatethe output y(rn+1). Thismeansthefilter coeffi-
cient update is always one sample behind the refl ection coefficient
update.

3. ASYNCHRONIZED LEARNING ALGORITHM

3.1. Transfer Function Representation

Thetransfer function of thejoint lattice and transversal filter shown
in Fig.1 congsts of the reflection coefficients and the filter coeffi-
cients. In this section, an equivalent transfer function in the time

domainis obtained. First, b(n) is expressed by
b(n) = K" (n)u(n) (12)
w(n) =[u(n),...,u(n — M +1)]". (13)
Second, f(n) isexpressed by
f(n) =T (n)u(n) (14)

Then elements of matrices J(n), K (n) can be calculated easly
using the following equations.

Jim(n) = Jimo1(n) + k(M) K11 me1(n — 1) (15)
Kim(n) = km(n)Jim—1(n) + Ki—1m-1(n—1) (16)

Here, K (n) hasthe following structure.

K(n) =
M [(071 (n) I(OVL(n) 0 <]
0 1 : Ko,r(n—1)
0 [(L_lyL(n) '
17
1 [(L_lyL(n — 1)
1
LO o o 0 ]
Using the above expresson, thefilter output is given by
y(n) = w" (n) K" (n)u(n). (18)

Inthis expresson, w ™ (n) K7 (n) representsthe equivalent trans-
fer function in the time domain.
3.2. Compensation of Filter Coefficients

From thediscussionsin [7],[8], w(n + 1) isupdated using K (n),
therefore, the following output at the next sample can reduce the
cost function.

gn+1) = 'wH(n + I)KH(n)u(n +1). (29)

However, K (n) isupdated at the (n+1)-th sample, then the actual
output becomes

y(n+1) = 'wH(n + I)KH(n + Du(n+1). (20)

y(n + 1) cannot reduce the error well. In order to overcome this
mismatch, the filter coefficients are compensated so that the trans-
fer function equivalent Eq.(19). That is,

K(n+ 1)®w(n+1) = K(n)w(n+1). (21
From this condition, we obtain
Ww(n+1) = K_l(n—l—l)K(n)'w(n—l—l). (22)

This compensated filter coefficients will be used at the (n + 1)th-
sample to generate b(n + 1) and y(n + 1). Figure 2 shows the
fact that the equivalent transfer function fluctuated by update of
the reflection coefficients can be restored by the compensated filter
coeffidents.
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Fig. 2. A synchronized learning algorithm in error surface.

Table 1. Comparison of The Joint Lattice and Transversd Filter

Multiplier Adder
Synchronized | 2M L +5M + 9L | 2ML 4+ 4M + 5L
Con. Lattice 5M + 9L 4M + 5L
NLMS 5M aM
RLS 3M? 4+ 4M 2M? +3M

3.3. Computational Complexity

Table 1 lists the number of computations of the “Synchronized
Learning Algorithm” and the conventional algorithms. “Conven-
tional Lattice” indicates the joint adaptive filter, which has the
same structure as the proposed method.

4. BLOCK IMPLEMENTATION OF SYNCHRONIZED
LEARNING ALGORITHM

4.1. Reflection Coefficient Update

In the synchronized learning algorithm, the filter coefficients are
modified in synchronizing the reflection coefficient update. Usu-
ally, the reflection coefficients are updated at every sample. How-
ever, if the input signals are stationary or can be handled as sta-
tionary signals during someinterval, the refl ection coefficientswill
be dlightly changed. Furthermore, slight deviation from the ideal
reflection coefficients does not affect convergence performance.
This meansthe reflection coefficients can be fixed during somein-
terval. By fixing them, the modification of the filter coefficients
given by Eq.(22), which requires a main part of computations, is
not required.

Figure 3 shows atime chart of changing the reflection coeffi-
cientsat every S samples After x(n) areupdatedto x(n+1), the
matrix K (n) isupdatedto K (n+1). Using K(rn) and K(n+1)
, the filter coefficients w(n + 1) are modified by Eq.(22). This
modification is repeated during M samples Because the signals
passng through «(n + 1) are transferred through A/ — 1 delay
elements, and effects of x(n + 1) on the filter coefficients con-
tinue during M samples In Fig.3, the hatched blocks occupying
M samplesindicatesthis processing. After M samples, the modi-
fication by Eq.(22) is stopped, no computations for this purposeis
required. Figure 4 showsthe part of the matrix K, where effects of
changing the reflection coefficients apper, and related to the modi-
fied filter coeffidents « (n). This partial modification can savethe
computationsinto a half of the original at the most.

S change S change S

K (n)
7] stop 7] stop 7] stop
~— — ~—_ — ~—_ — 9 q
M M M

Fig. 3. Block update of reflection coefficients.

Modification part of filter coefficients

1Ky (n) Ko,(m) - Ky, (n) 0 e 0 w (1)
0 1 K,@m - K, . : w (n)
0 0 | I : : 0 :
0 0 0 K oKy () :
0 0 0 1 Ky, () . : w, (n)
: : : R 1 : :
00 0 T Ky @) :
0 0 [V 0 1 W, (1)

Updating part of matrix elements

Fig. 4. Reflection coefficients update and modification of filter
coeffidents.

4.2. DoubleLattice Predictor Structure

Even though the reflection coefficients can be fixed in some in-
terval for whitening the input signal of the adaptive filters, they
must be updated at every samplein order to accurately estimated.
Therefore, a doublelattice predictor approach is proposed. One of
them is used to estimate the reflection coeffidents « (n), in which
the reflection coefficients are always updated. The other isused in
thejoint adaptive filter to output the backward prediction errors, in
which the reflection coefficients are transferred from the previous
lattice predictor at every .S samples, and are fixed.

Thedoublelatti ce predictor structureisshownin Fig. 5. Inthe
upper predictor, x; are updated at every sample. They are trans-
ferred to the lower predictor, combined with the transversd filter,
at every S samples. This processis denoted " copy” in thisfigure.
rm(n) and k%, (n) mean the fixed reflection coefficients. f,,(n)
and bAm(n) are the forward and backward prediction errors using
the fixed reflection coefficients. K (n) isalso calculated using the
fixed reflection coefficients. Another operationsin the joint lattice
and transversd filter arethe same asthe structure shownin Fig.1.

4.3. Computational Complexity

Table2 lists the number of computations of the “Block Implemen-
tation of Synchronized Learning Algorithm”. The computational
complexity is different from the sampling points ¢ in Fig.3, where
thefilter coeffidents are modified (mS < ¢ < mS + M) or are
not modified (mS + M + 1 < ¢ < (m + 1)S — 1)by chang-
ing the reflection coefficients. “Maximum” is given for the modi-
fied interval and “Minimum” for the other interval. The maximum
number of computationsin Table 2 is about a half of that of “Syn-
chronized” in Table 1. In the case of sub-band adaptive filters, the
proposed method is very useful. If asingle DSPis shared by all the
sub-bands, then computational requirement can be reduced, that is
about M L. Msp isasub-band adaptive filter length, which can
bewell reduced from M.
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Fig. 5. Double lattice predictor structure

Table 2. Comparison of The Block Implementation of The Joint
Lattice and Transversd Filter

Maximum Minimum
Multiplier | ML 4+ L*/2 +3M + 11L +2 | 3M + 11L 4 2
Adder QML —L?*+3M + 7L 3M + 7L

5. SIMULATION AND DISCUSSIONS

Simulation was carried out based on sysem identification. An un-
known system is the 10th-order IR lowpass filter. The impulse
response spreads over 50 samples  Therefore, the adaptive filter
length M is set to 50 taps.

The voice signal used in the simulation is shownin Fig.6. A
sampling frequency is 8kHz, then 20, 000 samples mean 2.5 sec-
onds. Figure 7 shows the learning curves. The proposed method,
“Block Implementation (L=20, S=200)", can catch up with the
“Synchronized” at 3000 iterations. This means the convergence
in early stage is alittle slower than the original structure shown
in Fig.1, in which the reflection coefficients are updated at every
sample. However, the “Block Implementation” can save computa-
tional complexity from about 2 L. to M L. compareto the “ Syn-
chronized’.

From these simulation results, the proposed method is useful
for nongationary processes, such as speech signal.

6. CONCLUSIONS

A block implementation method has been proposed for the joint
lattice and transversal filter supervised by the synchronized algo-
rithm. Thereflection coefficients are fixed in someinterval, where
the modification of the filter coefficients can be saved. Computa-
tional load of the proposed method is about a half of the original
one at the most. The block implementation method can be effec-
tively applied to parallel form adaptive filters, such as sub-band
adaptive filters. The computer simulation has shown the proposed
method is useful for nonstationary signal's such as speech signal.
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