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ABSTRACT

‘This paper suggests a discrete optimization
method which can solve high order FIR filter pro-
blems within a practically reasonable computing
time. The error spectrum caused by rounding off
the coefficients is shaped through the discrete
optimization so to be effectively cancelled, in
the L2 norm sense, by other factors connected in
cascade. In order to save computing time, the
error spectrum is evaluated in a time domain, and
parameters are divided into small groups during -
searching for the optimum solution. LPF and BPPF
design examples, with 200 lengths, show the pro-
posed approach can reduce coefficient wordlengths
by 2 or 3 bits, compared with results obtained by
only rounding off. The execution time on the
general purpose computer, ACOS System 900, is 97
seconds.

INTRODUC TION

Digital filter element values are basically
expressed with finite precision, that is discrete
value, Furthermore, their circuit complexities
are highly dependent on a number of quantization
stepse. For this reascn, it has become very im-
portant to design discrete valued filters satis-
fying a desired response with minimum wordlength
elements. Several useful discrete optimization
methods for IIR and relatively low order FIR fil-
ters have been proposed up to now. They include
random search .U11], [2], univarate search [3],
branch and bound [41, [5], Hook-Jeeves method [6] ,
and a combination of crounding off and iterative
Joptimization [71. On the other hand, discrete op-
timization for high order FIR filters has been
tried by other methods, mainly based on mixed-in-
teger programming algorithms [81 - [101. However,
they require much computine time for hish order FIR
filters as yet.

This paper proposes one approach, which is
particularly useful for high order FIR filters,
from the computing time viewpoint.

NEW DISCRETE OPTIMIZATION

Principle :
Principle of the proposed discrete optimiza-

tion algorithm can be summarized as follows:

(1) A transfer function is basically realized in

a cascade form

I k3
H(z) = TTHi(z), z = e¥T, T: Sampling period. (1)
o=
(2) Letting AH;(z) be the error function for
Hj(z), caused by rounding off its coefficients, the
coefficients are optimized so that the error spec-
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trum lAHj(ejw)l is cancelled by Hj(z) in the Ip
norm sense, where T is taken as unity, and

I
Hj(z) = TTH;(2) (2)
i=1
*J
The discrete optimization can be formulated as
s
1 N 3 2
Ej = Z_ﬁjwmnj(esw)nj(eaw)l dw (3)

where Ej is minimized for all Hj(z).
Filter Response Improvement
Let H(z) be expressed as

H(z) = Hq(2)Hp(z) (4)

The following discussicns are valid for the case of
large number of factors connected in cascade. It
is assumed here that the error spectrum shaping is
completely accomplished by the discrete optimiza-
tion, and parameters are optimized within £ bit
variable wordlengths from the least significant bit

(LSB). The following relations result
148 o(ed)Hp ()] = < (5a)
|H1(ejw) AHQQQ(ejw)|= c2 (5v)

where c¢q and ¢, are constant values. Furthermore,
when Hqqo(z) and Hon(z) coefficients are assumed
to be uniformly distributed in the region -4y,
A3, their power can be expressed as

n 2
1 A .
’z_fj‘lr:AHiQO(ejw)l2dw= —é‘Ni, i=1,2 (6)
vhere Ni is the number of taps for H;j(z). From
Egs. (53 and (6),

2 2

P A . .
_%%ﬁijeaw)'%w =_324 Nj, i=1,2, 3=2,1. (7)
From this relation, c; can be obtained as

2 -1 02 .
o2 = (BEw)/ I NG, 1= 12, =2, 1 (8)

where |l.|p is an L8 norm. Assuming the mutual cor-
relation of MHyqo(z and MHon0(z) to be zero, the
optimized H(z} error spectrum is obtained as
j 2 2 2

IAHQO(er)l =cj+c5 . (9)
On the other hand, the error spectrum, caused by
only rounding off the H4(z) and H2(z) coefficients,
becomes

2
12 g! j 2 . .
ci = 12 NilHj(er)l y 1 =1, 2, J = 2! 1 (10)



vhere thedHqq(z) and Miog(z) coefficients are also
assumed to be uniformly distributed in the region
[-89/2, A0/2]. The H(z) error spectrum is
expressed

IAHQ'(ejt‘))I2 = 0;2 + 0;2 . (1)
If the following relation is satisfied
lag(e3) 1 < lany(e?)] (12)

then, filter response improvement can be achieved
in the norm sense. The left and the right hand
sides of Eq. (12) are determined by L, and Leo
norms for Hi(z), respectively. The frequency re-
gions satisfying Eq. (12) usually appear in fre-
quency selective filters, because an L, norm is
well reduced from an Ly norm.
Example

For simplicity, the amplitudes of H1(z) and
Hz(z) are assumed to be approximated by

; 1
15, =75, T wsw

(13a)

1]

1
[Hy(e3) | =77 oA TS w T . (13b)

From Egs. (8) and (9),N .
. 2 _ 42 1. 2'
|AHQQ(er)] = '3'& 1|H§1(e‘w)“§ + llHﬂ (e,](o)"a}.(M)

The L, norms for H;1(z) and H’2‘1(z) are calculated
as

I (303 = 153.8 (152)
E;" (3115 = 1091.2 . (15b)
Letting £ be 2 bits, 4 relates to Aj as
Furthermore, by setting Ny and N2 to 100,
s 2
IaHgg(ed®) |7 = 3.034) - (17)

On the other hand, lAﬂq(ejw)|2 can be expressed as
jwy 2 A 2 jwy 2
1aBg(e?)1% = 32 { W bE,(e¥)1% + w,yhm, ()12} (18)

From Eq. (13),

|4Hg(e3%) 12 ana |4BQo(e?®)|? are shown ip Fig. 1.

In this figure, they are normalized by Ao, and w
is normalized by ® . The error spectrum, caused
by rounding off the coefficients of the whole
transfer function H(z), is also shown with a dashed
line. ’

DISCRETE OPTIMIZATION PROCEDURE

Detailed discrete optimization procedure is de-
scribed here. The aim of the following procedure
is to drastically save computing time. The fol-
lowing two contrivances are introduced for this
purpose.

(1) Evaluate the error spectrum in a time domain
in order to avoid frequency response calculation
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at each sarching step, which consumes a large
amount of computing time.
(2) Using the low order weighting function W*(z),
divide parameters into small groups during search-
ing for the optimum solution.

For simplicity, H(z) is expressed as
H(z) = W(z)F(z) (20)

where W(z) is a weighting function for F(z). In
the discrete optimization procedure, instead of
¥W(z) another weighting function W#(z) is utilized
in order to decrease a number of parameters and to
shape an error function AF(z) so to be effectively
cancelled by W(z). Let Afp and w¥ be the impulse
response for AF(z) and W¥(z), respectively. The
AH(z) impulse response can be expressed as

n
th = ¥ wxaf ., ¥ = min{n, M] (21)
m=0

where M is degree of W*(z). From the Parseval re-
lation, the error Ej by Eq. (3) can be evaluated in
a time domain as

N-1
E= 3 Al (22)
n
n=0
where N is a number of H(z) taps. From Eqs. (21)
and (22),
N-1 T >
E= 3, {2 w;Afn_m} , T = min{n, M}. (23)
n=0 m=0
Assume that n satisfies
M< n (24)
then, Ahn and Ahn+M+1 are expressed as
M
bh = 5 wEAL (25a)
m=0
M
Ahn+M+1 = ,Eo w;Afm_MH -m ° (25b)

Since they do not contain the same parameters, they
can be independently minimized. This basically
indicates the possibility of parameter division in
the error evaluation. Iet the partial sum from
Ahg x4 to Ahg be E{k}

X-1

gk} = S an2 ., K<k . (26)
i=0

€{kl consists of Afy_g,1-M~Afy, (K+M < k), and

can be minimized by searching for their optimum
solution. In the proposed method, k takes the fol-
lowing value

k = L(K-K'), K'< K, L =0, 1, ... (27)

E{L(X-K')] and £{(L+1)(K-K')} contain (K'+M-1) com~
mon parameters. In the E{L(K-K')} minimization,
the parameters in the set {Af;I|L(K-K')-K+1-M < i <
L(K-K')-L-L'} are already fixed at the €ik},

(x < L(K-K')) minimization etep, and the L+L' par-
ameters in the set {Af;IL(K-K')-L-L'+1 £ i < L(X-K')]
are optimized. After minimizing £{L(K-K')}, the L
parameters included in the set {Afj|L(K-K')-L-L'+1X
i < L(K-K')-L'} are fixed at this step and the re-
maining L' parameters, included in the set, {Afj!
L(X-K')-L'#1<i £ L(K-K')} are used in minimizing



E1(I+1)(K-X')} once more. Using the same para-
meters in minimizing the adjoining error functions
is to minimize error evaluation loss by the pare~
meter division. The number of possible parameter
value combinations for E{L(K-K')] is the (I+L')th
pover of P, vhere P is a number of discrete value
steps for each parameter. Therefore, a small
(1L+L') value means drastically saving computing
time. :

initial Guess: The quantization error, caused by
rounding off the approximated coefficients with
infinite wordlengths, is taken as the initial
guess for Afj.

Searching Method: Since, the number of possible
assignments is strongly reduced, a global search-
ing method is employed in this paper. Another meth-
ods, such as local search and heuristic search
methods, cannot avoid a risk of falling into the
local minimum solution.

DESIGN EXAMPIES
Parameters

A lowpass filter (LPF) and a bandpass filter
(BPF), shown in Table 1, are taken as design exam-
ples. Design parameters for the discrete optimi-
zation are also listed in Table 1. F(z) is approx-
imated by the Remez-exchange method [113 using
W(z) as a fixed weighting function. Coefficient
wordlengths (*) do not include a sign bit, and the
F(z) coefficient values are not normalized. In
the LPF case, zeros of W*(z) are all concentrated
at 1t radian on the wWT axis. However, parameters
Afj take only discrete values in the restricted
range, a.\id 18Fqo(e¥®) | is not strictly proportional
to |W*(ed®) |-1." For this reason, zeros of W(z)
are set on 2M/3 and ™ radian.
Optimized Filter Responses

Optimized filter responses are shown in Fig.
2, for the case of LPF with 10 bit coefficients.
The passband ripple in the optimized response,
W(z)Fqo(z), is almost the same as that of the orig-
inal response W(z)*Fp(z). The stopband attenu-
ation for W(z)Fq(z) is somewhat improved, from
that of Hp(z), vhose coefficients are rounded off
only, because the Fp(z) error spectrum is cancelled
by W(z) in the stopband. However, in the frequency
range where the condition |W(eJ®W)|& 1 is not sat-
isfied, that is, in the passband and the lower side
in the stopband, the improvement rate becomes lower
than W(z)Fgo(z).
Frequency Response Improvement Rate

The maximum passband ripple (peak to peak)
and the minimum stopband attenuation in Hp(z),
H%éz), W(z)Fq(z) and W(z)Fqo(z) for the LPF and the
BPF are shown in Fig. 3. The solid and dashed
lines for W(z)Fqo(z) indicate the variable word-
lengths are 2 and 4 bits, respectively.
Passband Ripple: The improvement rates by
W(2)Fqo(z) are always very remarkable, compared
with others.

Stopband Attenuation: In the case of LPF,
W(2)Fgo(z)

Desi

z) is superior to W(z)F,(z). They are,
however, almost the same for the BPF case. How-
ever, the efficiency of Fg(z)w(z) is highly de-
pendent on a desired frequency response.
Coefficient Wordlength Reduction: The proposed
approach can shorten the coefficient wordlengths
by 3 and 2 bits for the LPF and the BPF, respect-
ively, compared with HQ(z) and W(z)FQ(zS.
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Computing Time :
In the case of the IPF with the 4th order’

weighting function and the 2 bit variable word-
lengths, the execution time on the general purpose
computer, ACOS System 900. is 97 seconds, which

includes the fina. frequency cesponse calculation.

- CONCLUSION

A new discrete optimization method is proposed
which can solve high order FIR filter problems
within a practically reasonable computing time.
The fundamental concept is error spectrum shaping
80 to be cancelled by other factors. To drastical-
ly save computing time, several contrivances are
introduced. Design examples for LPF and BPF with
200 taps, show the new approach can decreases co-
efficient wordlengths by 2 or 3 bits. The comput-
ing time, on the general purpose computer, is 97
seconds.
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Roundoff in Direct farm

———————————— — Table 1. Filter specifications and discrete opti-
5 mization parameters.
]
~ Parameter LPF BFF
<
= Roundoff In H(z) 200 taps 200 taps
3 Semi-cascads form Sampling freq. 400 Hz 400 Hz
S0 Passband 0-50 Hz 57-142 Hz
a Ripple (Ap) +0.085 dB +0,035 dB
e Stopband 56-200 Hz | 0-50,150-200 Hz
2 Attenuation 72.5 dB 80.0 dB
u W(z) (1422=142-2) (1-2-2)2
51 Optimized in x(1+z_'_:+z:2§ ” 2.2
Semi-cascode form w*(z) (14227 42 (1-279)
¥(z) 196 taps 196 taps
\ Coefficient 8, 10, 12, 14*| 8, 10, 12, 14*
o . wordlengths bits bits
O 02 04 06 08 10 Search region 1, 2 bits 1, 2 bits
«T (x= radion ) K 5 5
. X! 1 1
Fig. 1. Example of error spectrum shaping. L 4 4
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Fig. 2. Optimized frequency responses. (a) Solid line: W(z)Fn(z)
with infinite precision coefficients, dashed line: (z) with
rounded off coefficients. (b) Solid line: W(z)Fyg(z) with opti-
mized coefficients, dashed line: W(z)Fg(z) with rounded off co-
efficients.
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