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ABSTRACT

The effects of the quantization of the parameters of a learning machine are dis-
cussed. The learning coefficient should be as small as possible for a better estimate
of parameters. On the other hand, when the parameters are quantized, it should
be relatively larger in order to avoid the paralysis of learning originated from the
quantization. How to choose the learning coefficient is given in this paper from the

statistical point of view.

1. Introduction

In many of theoretical analyses of learning
machines which realize an input and output
relationship, e.g. multilayer perceptrons, their
parameters are assumed to be analog and con-
tinuous, though they are digital and discrete
in practical implementations because of the
advantages that storage of parameters in dig-
ital memories can reduce the scale of circuits.
Then, it is necessary to elucidate what hap-
pens when the parameters are quantized.

One important effect of quantization is that
it makes the performance of the machine worse
because the parameters change a little from
the optimal [2,3,7,8]. And another important
effect occurs in the learning process. In case
that the parameters of the machine are modi-
fied by means of a stochastic gradient descent
method, e.g. the backpropagation learning,
the quantization causes paralysis of learning
when the correction steps become smaller in
absolute value than the resolution of the pa-
rameter. To avoid this, several algorithms
based on parameter perturbation have been
proposed (2,4, 8] but they are rather ad hoc
because they have no theoretical background
and only move the parameters after the paral-
ysis.

One method to overcome the paralysis is
to make the learning coefficient large enough.
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But it simultaneously makes the training error
increase [1,5,6]. In this work, the optimal
learning coefficient and the variance of the
trained parameters in that case are given from
the statistical point of view, and it implies how
much precision of the parameters is necessary
in order that the machine has a desired preci-
sion.

2. Statistical Model of Quantiza-
tion

Here, we consider the quantization error in two
cases, one of which is the case of fixed-point
representation, and the other is the case of
floating-point representation.

In the case of the fixed-point representation,
we assume that the quantization for b bits is
done by the round-off of the (b + 1)th bit in-
cluding a bit for its sign. Then, the quantized
parameter w' and the original parameter w
have the relation

|w' — w| < Wmax x 27° (1)
where b is the number of bits to represent the
value including the bit for the sign, and wmay
is the maximum value that can be represented
in b bits.

In the case of the floating-point representa-
tion, we assume that the original parameter



w is represented as the product of a man-
tissa between 1 and 10 in binary and an ex-
ponent 2¢, and that the quantization is done
by the round-off of the (b + 1)th bit of the
mantissa. Then, w' and w have the relation
|’ — w| < 2¢ x 27% where b is the number of
bits of the mantissa. Then, using

2° < Jlw| < 2x 25
we can derive the inequality

2

From the comparison of Equations (1) and
(2), we can unify both representations by
defining wym as

an = {

and then, the range of quantization error is
written as |w’' — w| < wm x 270,

We assume in the following that the quanti-
zation errors are independently uniformly dis-
tributed in the ranges. From this assumption,
the mean and the variance of quantization er-
ror are derived as

[w' — w| < Jw| x 27°.

when fixed-point repr.,
when floating-point repr.,

Wmax
|w]

Eff/ -l =0, Efw~ul] = zun2?,

respectively. Figure 1 shows the increase of
the output error of the theoretical analysis un-
der the assumption and that of the computer
simulations in the case of a pattern classifier
by a multilayer perceptron, which has 7 neu-
rons in the input layer, 10 neurons in the hid-
den layer, and 1 neuron in the output layer,
and which has learned given 3 input-output
patterns by the backpropagation algorithm.
They seem to agree well.

3. Properties of Backpropagation
Learning

We consider here the properties of the
backpropagation learning, more general, the
stochastic gradient descent method, that are
elucidated in [1] and [6].

Assume that an input vector z given to a
machine is independently chosen from a cer-
tain probability distribution having a density
p(z), and the machine outputs a vector y
depending on both of the input z and the
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Fig. 1: The increase of the output error of multilayer
perceptrons.

parameter vector w of the machine, that is,
y = F(z,w). Then, the ith given data is
denoted by

(zi'yi) = (:Bg, F(zi,wtrue))

where wrye is the parameter the teacher ma-
chine has.

Let an error function which represents the
distance .between the output of the teacher
machine and that of the student be denoted
by

d(y',y; z) d(F(z, Werue), F(z, w); 7)
d(w; z),

then learning is equivalent to minimizing the
average D(w;p(z)) of the error function d on
the input z, that is,

D(wip(2) = [ dwiz)p(z) de.

In some cases, we do not know the distribu-
tion p(z) and we have only a finite number
of data. Then, we use the empirical distribu-
tion p'(z) = $ 1., 8(z — z;) constructed by



t given samples (zj,¥;),7 = 1,...,t, instead
of p(z).

We define the optimal parameter wqp: and
the stochastic gradient descent method as
wept = arg miny D(w;p(z)) and
Wny1 = Wn + Aw,, Aw, = —nVd(wg;z),
respectively, where V denotes a differential
operator in respect of w, n > 0 is a learn-
ing coefficient, and n represents the number
of iteration.

After learning enough, an estimated pa-
rameter wes; is obtained, that is, wesy =
lim, .. w,. Since the estimated parameter
wes varies according to the samples given at
the learning period, it is a stochastic variable
which has a probability distribution density
denoted by p(west). Then, the next theorem
holds:

Theorem 1 If the initial value of the param-
eter w is appropriate, then

/ (West — Wopt)P(West) dwest = O,
/(west — Wopt)’P(West) dwesr = gQ_lG,
where
¢ = / Vd(wopr; ) V(wep; 2)T p(2) dz,

Q / VVd(wept; z)p(z) dz.

The proof of this theorem is given in [1] and

(6]-

4. Backpropagation Learning with
Quantization

As shown in two preceding sections, the vari-
ance of parameters originated in quantiza-
tion and in stochasticity are %wM22“2bI and
%Q‘lG, respectively. Then, if we assume that
they are independent, the variance of param-
eters is

L PO T Pov)
3wM2 I+2Q G.

It seems, therefore, the variance gets smaller
up to O (272) as the learning coefficient be-
comes smaller. In actual, however, learning
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paralyzes when the step Aw becomes smaller
than lwy2-%. To avoid the paralysis, the
learning coefficient should be large enough,
though that makes the variance of stochas-
ticity large. Then, there exists an optimal
learning coefficient to .minimize the variance
of parameters.

Let the learning coefficient 7 be O (27%).
Then, learning could achieve

O (27%/2)
W Wert = 0 (27Y)

unless the step Aw were quantized. Because |
the step Aw can be approximated as

if k < 2b,

otherwise,

Aw = -nVd(w;z)

—and(‘wopt; z) (W — wept)

by Taylor expansion if w — wepe is small,
Aw = O (27F%) (w — wep) is satisfied and the
learning stops when Aw is O (2"5), that is,
when w — wqpy = O (278+*). In order to min-
imize the order of w — wqpe, k should be 2b/3,
Then, the following theorem is derived:

Theorem 2 When the learning coefficient n
is O (2=%/3), the variance of parameters is

minimized to O (272%/3).

Reversely, we have to give the parameters a
precision of O (2“”) if we need to estimate the
parameters with a precision of O (2%/3).
The result above holds even in the case that
Vd(wn;z) itself is quantized because

Aw = -—-nVd(w;z)+eq
= —1V2d(wopt; ) (w — Wopt) + €q
where €q is the quantization error which is at

most 27°, and w — wep, has the precision of
2-b/3,

5. Computer Simulations

Computer simulations are done to confirm the
theoretical result above. The student machine
with 3 dimensional parameter w outputs

z-w

f(z;w) = tanh

according to a three dimensional input = and
is given the samples which consists of an input



z newly chosen subject to the uniform distri-
bution in [-1,1]® and the according output
f(zi;wopt)+n of the teacher machine where n
is a noise term chosen subject to N (0,0.0001).
the samples are given until the student ma-
chine converges. Figure 2 shows the variance
of the estimated parameter wes When the stu-
dent machine converges. the variance has the
same slope as —k and k/2 in the left and right
hand, respectively. It agrees with the result of
the theoretical analysis.
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Fig. 2: Variance of the estimated parameter west.

6. Conclusion

In this paper, the relation between the learn-
ing coefficient n and the precision of the es-
timated parameter we, has been analyzed
when the parameter is quantized with preci-
sion of 2=%. Though the parameter has b-bit
precision, the estimated parameter has only
b/3-bit precision even in the optimal case.
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