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Abstract—This paper presents a numerically stable fast hand, the instability of the FRLS algorithm is mainly produced
Newton-type adaptive filter algorithm. Two problems are dealt by a hyperbolic rotation (causing the eigenvalues to exit the
with in the paper. First, we derive the proposed algorithm from an it circle) that has to be operated on the backward predictor in

order-recursive least squares algorithm. The result of the proposed der to obtain th . fi f ting th .
algorithm is equivalent to that of the fast Newton transversal filter ~ Ofd€r 10 obtain the recursive equations tor computing the gain

(FNTF) algorithm. However, the derivation process is different. Vector [6], [7]. Several error feedback methods were proposed
Instead of extending a covariance matrix of the input based on the for overcoming the instability problem of the FRLS algorithm

min-max and the max-min criteria, the derivation shown in this  [10]-[12]. However, the stable performance obtained by the
paper is to solve an optimum extension problem of the gain vector error feedback mechanism is maintained, provided that the

based on the information of theM th-order forward or backward . . .
predictor. The derivation provides an intuitive explanation of the TCrgetting factorA is restricted to arange of ¢ (1 —1/3M, 1),

FNTF algorithm, which may be easier to understand. Second, we Where M denotes the order of the predictors [12]. This may
present stability analysis of the proposed algorithm using a linear degrade the tracking ability of the FRLS algorithm.
time-variant state-space method. We show that the proposed algo-  |n the FRLS algorithm, however, if we assume that the
rithm has a well-analyzable stability structure, which is indicated e rsions involve both order- and time-update, then the least
by a transition matrix. The eigenvalues of the ensemble average . . . .
of the transition matrix are proved all to be asymptotically less squares solution F:an be obtained by using either the forward
than unity. This results in a much_improved numerical perfor- or baCkWard predICtOI‘. Therefore, the Stable structures Of bOth
mance of the proposed algorithm compared with the combination the forward predictor and the backward predictor are retained.
of the stabilized fast recursive least squares (SFRLS) and the This leads to the algorithm we called the predictor-based least
FATE Agortins, Computer smulatons mplemented by UG squares (PLS) algoritim, which includes the forward PLS
analysis. (FPLS) and the backward PLS (BPLS) algorithms.
o _ Although the PLS algorithm can be easily derived from the
Index Terms—Adaptive filter, FNTF algorithm, FRLS al-  ppy 5 gigorithm, very few investigations concerning its numer-
gorithm, LSL algorithm, numerical stability, RLS algorithm, . . . . .
stabilized FRLS algorithm. ical properties are repor_ted in the_ Ilterature. In_ [13], we have in-
troduced the PLS algorithm and investigated its numerical per-
formance. It has been shown that three major instability sources

. INTRODUCTION reported in the literature, including the numerical instability of

HE recursive least squares (RLS) and the fast recurstite conversion factor, the loss of symmetry, and the loss of pos-
T least squares (FRLS) algorithms are two well-knowftive definiteness of the inverse correlation matrix of the input,
approaches for solving the exact least squares solution in fifgnot exist in the PLS algorithm. This results in a much im-
transversal adaptive filters. Unfortunately, both algorithnfd'oved numerical performance of the PLS algorithm compared
suffer from the numerical instability problem under a fiWith the RLS algorithm.
nite-precision implementation [1]-[11]. In the RLS algorithm, Unfortunately, the computational load of the PLS algorithm is
awell-known example is the loss of symmetry and positive de2(/V?). This makes it difficult to be implemented in real-time
initeness of the inverse correlation matrix [1]-[4]. This causé@pplications, even using today's DSP technology. In order to

paper. The assumption for the fast PLS algorithm is the same as
that of the fast Newton transversal filter (FNTF) algorithm [14],
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information of theMth-order forward or backward predictor. A (n) = AFm(n — 1)7 (n—1) ©)
Hence, the derivation gives an intuitive explanation of the FNTF '™ F.(n) "
algorithm. ~ 0 N (1) 1

The most important characteristics of the PLS algorithm andkm+1(n) = [Em(n - 1)} + AF,,(n—1) [am(n — 1)}
its fast version are their excellent numerical properties. In the (4)
paper, we adopt a linear time-variant state-space method for am(n) = am(n — 1) = Ym(n — Dnm(n)km(n — 1) (5)

their stability analysis. The transition matrices of the PLS algo-
rithm and its fast version are indicated, and their ensemble ayherey,, (n) is the forwarda priori prediction errorf,, (n) is
erage is evaluated. The eigenvalues are shown all to be asyghe-minimum power ofy,, (n), vm(n) is the conversion factor,
totically less than unity. In [15] and [16], we gave the derivek,, (n) is the normalized gain vectas,, (n) is the tap-weight
tion of the fast BPLS algorithm and investigated its numericgkctor of the forward predictor, and,,(n) is the tap-input
and convergence properties. In this paper, we will present fgctor.

fined derivation and stability analysis for both the fast FPLS

and the fast BPLS algorithms. We will show the equivalena® Backward Predictor-Based Least Squares (BPLS)
between the proposed fast PLS algorithm and the FNTF alggigorithm

rithm and compare the numerical performance of the fast PLS

algorithm with that of the combination of the stabilized FRLS

and the FNTF algorithms [we will hereinafter call the stabilized P (n) = cﬂ(n — u,(n) +u(n — m) (6)
FNTF (SFNTF) algorithm]. — \B -1 b2 7

We notice that the least squares lattice (LSL) algorithm, m(n) )\BM((:’LL 3 1>>+7m(n>l/]m<n) 0
which is also an order-recursive adaptive filter, was reported ~,,,1(n) = #%n(n) (8)

to have a well-behaved numerical performance [17]-[19]. The .
PLS algorithm is different from the LSL algorithm in thatit . ()= [km(n)} " Pm(n) [cm(n - 1)}

provides an explicit relationship between the gain vector used in 0 ABp(n —1) 1
the transversal filter and the predictors used in the lattice filter. 9)
It is therefore possible to obtain a numerically well-behaved Cm(n) = Cm(n — 1) = Yo (1)1 (1)K (n) (10)

transversal adaptive filter and reduce the computational cost by

exploiting the autoregressive property of the input signal théherey.,(n) is the backwaré priori prediction error,,(n)
may be modeled by a lower order of predictors. Therefore, tHethe minimum power of),,,(n), andc,,(n) is the tap-weight
PLS algorithm may be considered as the transversal counterpyggtor of the backward predictor.

of the adaptive lattice filter. The filtering part is common for both the FPLS and BPLS
The organization of this paper is as follows: The PLS alg&lgorithms.

rithm is introduced in the next section. The derivation of the fast T

PLS algorithm is presented in Section Ill. In Section IV, the nu- e(n) = d(n) = wy(n - 1>uN(n)~ (11)

merical properties of the PLS and the fast PLS algorithms are wy(n) =wy(n—1)+e(n)yn(n)ky(n)  (12)

analyzed. In Section V, some computer simulations, which W%eree(n) is thea priori estimation errord(n) is the desired

mpl_er;ented by L;.smgha vans_tly of Wolrdl_e ngtg arr]'thmﬁt'c’ Wer's?gnal, andwv y (n) is the tap-weight vector of the adaptive filter.
carried out to confirm the stability analysis and show the numer-1 oo the PLS algorithm at time = 0, set

ical performances among several typical least squares and fast

Newton-type algorithms. The conclusion remarks are given in an(0) = c,(0) =0, (13)
Section VI. Fpn(0) = B (0) = 6 (14)
K,,(0) = 0,, (15)

Il. PREDICTORBASED LEAST SQUARESALGORITHM
Ym(0) =1 (16)

The PLS algorithm can be derived from any version of the
FRLS algorithm. Since only one predictor, forward or backwherem = 1,2,..., N, andé is a small positive constant.
ward, is needed, we can write two versions of the PLS algorithmAt each iteratiom > 1, generate the first-order variables as
by using the definitions and the symbols that are consistent wigllows:

those used in [19] as follows. N 1., u(n)
For both versions, when time = 1,2,3, ..., compute the ki(n) = 1o (n— Du(n) = b (n—1) (17)
order updates in the following sequenge= 1,2, ... N, where 1 A®(n — 1)
N is the final order of the predictor. m(n) = - = (18)
1+ ki(n)u(n) P4 (n)

A. Forward Predictor-Based Least Squares (FPLS) Algorithnwvhere ®,(n) is the first-order of the input sample correlation
matrix that satisfies

(1) = u(n) +aZL (n — )um(n — 1) @ ®1(n) = A0y (n — 1) + u*(n) (29)

Frn(n) = AFp(n — 1) + ym(n — 1)nZ,(n) (2) where®,(0) = é.
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[ll. PLS-BASED FAST NEWTON ADAPTIVE FILTER ALGORITHM On the other hand, from the definition of the forwargos-

The PLS-based fast Newton adaptive filter algorithm, whidfgriori predictor errorfy1(n) [19]
we also call the fast PLS algorithm, can be derived based on

either the FPLS or the BPLS algorithm. Farsa(n) = Yarsa(n ; Dz (n)
Assume that the input signal can be represented by an autore- =u(n) +ap 1 ()un41(n — 1)
gressive model of orde¥! (AR(M)), implying that the use of =u(n) +al;(n)uy(n—1) (25)

the predictor of orded is adequate and that the tap weights of

the forward predictoa,,, () or the backward predictat,,(n) we can readily deduce that

that have order greater thad are zeros. The problem is how

to extend thel/th-order normalized gain vectdirM(n) to the far(n) = min{ fare1(n)}ar (n)=aZ (n)- (26)
Nth-order normalized gain vectdry (n) based on the knowl- M !

edge of thel/th-order forward or backward predictor with op- Under the constraint of usingn;(n) and fas(n), from (2),
timum estimation and least increase of Computation. the minimum prediction error power we can get is

A. Fast FPLS Algorithm Far(n) = AFa(n — 1) + far(n)mar(n) 27)
For the fast FPLS algorithm, we want to show that when only

the information of the\/th-order forward predictor is available,which means

the optimum extension of the normalized gain ve&gi(n) for

m > M satisfies the following equation: Fyr(n) = min{Fpr41(n)}. (28)

- 0, 1 ! nar(n — i) Therefore, the optimum estimatesayf;1(n — 1), nar+1(n),

ki (n) = ky(n—m+ M } Z AFy(n—i—1) andFy;41(n — 1) satisfy the following equation:

(i”" nar+1(n) [ 1 }
) — -1
ay(n—i—1y| - @O Ml =1) (=1 1
Omf I—i—
M = % ay(n—1)|. (29)
To prove (20), we first compute the FPLS algorithm up to ar(n = 1) 0
the Mth order to obtairk,;1(n) and the forward predictor o _
ayr(n —1). Then, we write (4) forn = M + 1 as Substituting (29) into (21), we get
0 Nai4+1(n) 12MH(“)
k _ UMAIR)
M+2( ) |:k]\[+1(’n,—l):| + /\F]\,[+1(n—1) 0 7’]]\[(11) 1
1 =[~ ]4_7 ay(n—1)
k -1 A —
X |:a]\’[+1(n _ 1):| . (21) M+1(n ) /\F]\/[(n 1) 0
0 0
From the assumption, the last termagf; 1 (n — 1) is zero, that _ 0 n nuv(n —1) 1
. f(]\,[ (n — 2) APy <n N 2) ans (n — 2)
é]u(?’l, — 1) 1
ayy1(n—1) = { } (22) na(n)
0 _ — .
T X —1y [ (30)

wherea, (n — 1) denotes the elements af;1(n — 1) up to

the Mth order. Continuing in this procedure, we can prove (20). Therefore,

We want to determine the tap-weight vector of the forwarghe ypdate equation for ordéf of the normalized gain vector
predictoran, 41(n — 1) or ay(n — 1) so that the forward . (5) can be written as

priori prediction erromys4+1(n) and its error poweF s, 41(n)

can be minimized. Since i B On_ s
T N(n)_ RA,[(R—N+M)
m+1(n) = u(n) +ay 4 (n — Dupra(n — 1) 0;
= u(n) +aj; (n — Dunr(n — 1) (23) N_zMj_l na(n — i) 1 (31)
. . - - ‘ /\F]\[(’n—i—l) ay(n—i—1)
comparing (23) with (1), it is not difficult to see that when =0 On 2/ i1

a%,(n—1) = al,(n—1), the minimum forwardh priori predic-
tion errorys(n) (least squares solution) can be obtained. This Notice from (31) that no additional computation is needed to
means that obtainky(n), except for some delays when > M. This is
the key point that makes the computational reduction of the fast
nv(n) = min{nar41(n)}Har (no1)=ar m—1)-  (24) FPLS algorithm possible.
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In summary, when only the information of tiéth-order for-
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B. Fast BPLS Algorithm

ward predictor is available, the optimum extension of the pre- g, the fast BPLS algorithm, the optimum extension of the

dictor form > M satisfies the following relations:

normalized gain vectadk,,,(n) for m > M is shown by

Nm(n) = na(n) (32) o )
Fr(n) = Fyr(n) (33) &k kM m(n—i
an(n) )= O -1 Z ABp(n—i—1)
an(n) = 3] 59 N
o, 1
Based on the above relations, we can derive the extension of X car(n 1 ' ) (42)

the conversion facteyy (n) thatis needed for obtaining the gain

vectorky (n) = v (n)ky(n) as follows.

From (2) and (3), we rewrite the order-update equation of

7m+1(n) as
1 1 T (1)
= + m . 35
Ym+1(n)  Am(m—1)  AE,(n—1) (35)
Form = M + 1, (35) is shown to be
1 B 1 77%1_1-1 (n)
Ym+2(n)  ym(n—1)  AFyga(n —1)
_ 1 nir(n — 1) 13 (n)
(36)
Following this way,yx (n) can be obtained by
o 1 . N i ! N3 (n —1)
’YN(’I’L) ")/]\/[(n—N-I-M) iz )\FJ\,[(?’L—i— 1)
(37)

The summations on the right side of (31) and (37) can be f

O n—i—1

To prove (42), we first computiey; 1 (n) andcys(n — 1) in
the BPLS algorithm. Then, we write (9) fot = M + 1 as

knri2(n) = [RMBI () }

a)_[ewn(n-1
ABpr41(n — 1) [ 1 ] -

From the assumption, the first termef; 1 (n —
is

1) is zero, that

CA,[+1(7’L — 1) = |:C]\/[(7?_ 1):| (44)
wherec,,(n — 1) denotes the elements of;11(n — 1) up to
the Mth order.
We want to determine the tap-weight vector of the backward
predictorcy 41 (n — 1) or €pr(n — 1) so that the backward
riori prediction error)as11(n) and its error poweB ;41 (n)
an be minimized. Since

ther simplified. Letgy(n) denote the summation part of (31);

then, we can write

- 1. On-m
ky(n) = |:kM(n—N+M):| +gn(n) (38)
where the recursive equation fgg (n) is given by
1
gn(n)| 0 v (n) _
[ 0 } - |:gN(7’L - 1):| + )\F]\,[(TL — 1) a]\é<n 1)
N-M

~_nu(n—N+M)
)\F]\,[(n—N+M— 1)

On_m
1 . (39
ay(n—N+M-1)

Yars1(n) = i (n = Duarpa(n) +u(n — M — 1)
=ct(n—Dupy(n—1)+un—M—1) (45)

from (6), we can see that the optimum predictor, which uses
w(n—1),...,u(n— M) topredictu(n— M —1),iscp (n—2),
which satisfies

Yar(n —1) = cii(n —2)upy(n — 1) +u(n — M — 1) (46)

wherey s (n—1) is the minimum prediction error (least squares
solution).

For the same reason, lgtn) denote the summation part of Comparing (45) with (46), we can see that the minimum pre-

(37); thenyn (n) becomes
1 1

(1) N Yar(n — N + M) + g(n) (40)
whereg(n) is given by
2
g(n)=g(n—1)+ %
ni(n— N+ M) )

CAFu(n—=N+M-—1)

We note that the results of (38)—(41) are equivalent to the

Version 2 of the FNTF algorithm.

diction errorys(n — 1) can be obtained by simply choosing
cti(n—1)=cl,(n-2). Thatis

Par(n —1) = min{Yari1 (n)}Her (n-1)=c?,(n—2)  (47)

From the definition of the backward posteriori predictor
errorbar41(n) [19]

bavr+1(n) = Yars1(n)arsa(n)
= C£I+1( Junryi(n) +
= cpr(n)up(n—1) +

u(n -1)

uln—M —1)

(48)
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TABLE |
SUMMARY OF THE FAST PREDICTORBASED LEAST SQUARES (FAST PLS) ALGORITHM

Initialization:
For n=0and m =1,2,..., M, set the parameters of the forward and backward predictors as follows:
am(0) = cm(0) =0, Fn(0)=Bn(0) =6, kn(0)=0m, ~m(0)=1
Set the parameters of the extended gain vector and the adaptive filter as follows:
gn(0) = hy(0) =0n, g(0)=h(0)=0, wn(0)=0n
At each iterations n > 1, compute the first-order variables as follows:
®1(n) = A®1(n — 1) + u*(n) (®1(0) =9)
k1(n) = u(n)/(A&1(n — 1))
71(n) = A®1(n — 1)/®1(n)
1. The Fast Forward Predictor-Based Least Squares (Fast FPLS) Algorithm

Prediction:

For n=1,2,3,..., compute the following order updates in the sequence m =1,2,..., M:

Nm(n) = u(n) + al(n—1un(n—1)

F(n) = AFm(n — 1) + Ym(n — 1)n2(n)

Y (n) = %)—wn _1)

-~ _ 0 ) [ 1 ]
kma(n) = [i&m(n - 1)] T X —1) [an(n—1)
am(n) = am(n — 1) = Ym(n — 1)nm()km(n — 1)

Gain vector extension:
Based on num(n), Fmu(n—1), amy(n—1), pu(n—7), Fu(n—7-1), apy(n—7-1), ky(n—7) and ym(n—1),

where 7 = N — M, compute ky (n) and yn(n) as follows:

(n) 0 ' o
gn(n N (n) nm(n—1)
= M -1 | -2 1
[ 0 ] [gN(n-.y—l)] +)\FM(n—1) am(n—1) AMFy(n—7-1)
! N—M aM(n e l)
~ -M
k =|. +
~(n) [kM (n— T)] gn(n)
2 2
— _ mu(n) _  nu(n— 7)
9 =90 =D+ SF -1~ Xu(n—7-1)
1 1 +o(n)
W)~ yuln—71) "7
we can easily deduce that Therefore, the optimum estimates@f;1(n — 1), ¢¥ar4+1(n)
bar(n — 1) = min{bars1 (n)Her ouyme? (n_1)- (49) andBjs4+1(n — 1) satisfy the following equation:
Under the constraint of usingy; (n—1) andb,; (n—1), from
(7), the minimum prediction error power we can get is Yar+1(n) [CM+1(71 - 1)}
Bar(n — 1) = ABat(n = 2) + bar(n — Dopar(n — 1) (50)  Mw+(n=1) 1
. 0
which means _ Yu(n—1)

= (n—2)(. (52)
B]\/[('n — 1) = m1n{BM+1(n)} (51) )\B]L[(n — 2) CAI( . )
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TABLE | (Continued)

2. The Fast Backward Predictor-Based Least Squares (Fast BPLS) Algorithm

Prediction:

For n=1,2,3,...,, compute the following order updates in the sequence m =1,2,..., M:

Ym(n) = cf,(n — 1Dum(n) + u(n —m)

Bm(n) = ABm(n — 1) + ym (n)¥2 (n)
AB,.(n—1)

Ym+1(n) = Bon () F¥m(n)
- ko (n) Ym(n) cm(n—1)
b= [ s [

Cm(n) = em(n = 1) = Ym (1) (n)km (n)

Gain vector ertension:
Based on ¢ (n), Bu(n — 1), cm(n —1), ¥m(n—7), Bu(n — 7 —1), cu(n — 7 — 1), ku(n) and ym(n),

where 7 = N = M, compute ky(n) and yn(n) as follows:

hy(n) 0 em(n—1) On—nr
MONN um(n) _ Yun-1) e
[ 0 ]_[hN(n—l)}*'ABM(n—l) 1 ’Bun—r=-1) Mn—1-1)
Onv-m 1
B =[] +hvo)
N-M
_ ¢2 (n) 1/)2 (n—1)
h(n) = h(n—1) + /\BMN(I’I’L— T~ ABMNZTL—T— 5

1

) = T

Filtering:
The filtering part is common for both the fast FPLS and the fast BPLS algorithms:

e(n) = d(n) — wy(n — 1)un(n)

wn(n) =wn(n—1)+ e(n)'yN(n)l-(N (n)

Substituting (52) into (43), we have . N M-1 _
g (52) (43) () = ko (n Z _ Pu(n—id)
0N M )\B]u 7‘L -7 — 1)
~ 0
- k]\,[+1(’fl) 1/)]\,1 (n - 1) Oi
karqa(n) = [ + 57— | cm(n —2) ~
’ 0 ABy(n —2) 1 « | cm(n T D1 (54
_ RA’"[O(H) N Yar(n) CM(Ti_ 1) ON a1
0 ABu(n —1) 0 Notice also from (54) that no additional computation is
needed for obtainindy(n), except for some delays when
Yu(n—1) 0 m > M
+ — < | (’I’L — 2) (53) i . .
ABp(n —2) 1 In summary, when only the information of the'th-order

backward predictor is available, the optimum extension of the

predictor form > M satisfies the following relations:
Following the same procedure, (42) can be proved. Therefore,

the update equation fdry (n) can be written as Um(n) = Yar(n — m+ M) (55)
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B,.(n) = By(n —m+ M)

Om—M
C]\J(TL —-—m + M)

(56)
cm(n) = ) (57)

The extension of the conversion factpg(n) can be calcu-

lated as follows. From (7) and (8), we rewrite the order update

equation ofy,,,+1(n) as

1 1
'7m+1(n) B 'Vm(n)

A
ABp(n—1)"

+ (58)

Form = M + 1 and using the relations of (55) and (56), (58)

can be written as

_
7M+2(n)
— 1 7/’12u+1(”)
’YM+1(71) /\BM+1(n — 1)
B R 1 B I GAt V
yv(n)  ABa(n—1)  ABy(n—2)
Following this procedureyy (n) can be obtained by
N—-M-1
1 1 Ar(n —1)
= + 60
ww(n)  vm(n) Z ABy(n—1i—1) (60)

2363

TABLE I
COMPUTATIONAL COST OF SEVERAL LEAST SQUARES AND FAST
NEWTON ALGORITHMS

Algorithm Computational cost
RLS 3N? + 11N +8
LSL 22N +4
PLS 1.5N% +3.5N +11
SENTF 6M + 14+ 2N
Fast PLS | 1.5M?% +1.5M + 14+ 2N

C. Comparison of Computational Complexity

The computational cost of several typical least-squares
algorithms, which are addressed in the introduction part, are
listed in Table Il (the cost includes only multiplications and
divisions). From Table Il, we can see that the PLS algorithm
requires about 50% of the computational cost of the RLS
algorithm. The computational cost of the LSL algorithm with
error feedback is abou?(22N). However, if the tap-weight
vector of the transversal filter is necessary, then the backward
predictorc,,(n), which is computed by the least-squares ver-
sion of the Levinson—Durbin recursions, is required to link the

The summations on the right side of (54) and (60) can be fJggression coefficients of the lattice filter and the tap weights

ther simplified. Lethy(n) denote the summation part of (54

then, we have

ky(n) = [EAN[_(Z[)] +hy(n) (61)
where the recursive equation fhi; (n) is given by
][ s [

0 hN(TL — 1) /\BM(n — 1) On—1s
Yar(n — N + M) ON-—m
B /\B]\/[(TL —N+M - 1) [CM(n - Nvl—l_M - 1)] . (62)

Let h(n) denote the summation part of (60); ther;(n) can
be written as

1 1

()~ ) T h(n) (63)
whereh(n) is given by
)2
Y3 (n— N+ M) (64)

CABy(n—N+M—1)

).of the transversal filter, leading to an(N?) computational

load [19]. The fast PLS algorithm requir€s(M?) + O(N)
computations, which is comparable to the SFNTF algorithm
whenM is small. This is usually satisfied in some applications
like acoustic echo cancellation, in which a speech signal is used
as the input [20]. Therefore, it may be desirable to use the fast
PLS algorithm to achieve a numerically stable performance.

IV. STABILITY ANALYSIS

The most important characteristics of the PLS algorithm and
the fast PLS algorithm are their excellent numerical properties.
In this section, we will prove these properties.

The prediction part of the PLS algorithm can be modeled by
the following nonlinear state-space form [10]

f1O(n = 1), um(n)]

where®(n) andu,,(n) denote the state-space variables and the
tap-input vector, respectively. For a finite-precision implemen-
tation, roundoff errors are introduced so tk¥t) = O(n) +
AO(n). Assuming that the errors are small, (65) can be lin-
earized in the presence of the roundoff errors, which leads to

O(n) = (65)

AB(n) = A(n)AB(n — 1) + V(n) (66)

where V (n) represents the instantaneous contribution of the
roundoff noise, and

A(n) = Vo f[0,un(n)]lo=om1)- (67)

We note that the results of (61) to (64) are equivalent to the
Version 3 of the FNTF algorithm. Table | presents a summaiihis is a linear time-variant system with a signal-dependent
of the fast FPLS algorithm and the fast BPLS algorithm. A (n) matrix. Therefore, itis difficult to make an exact statement
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about the deterministic stability. Nevertheless, we can make cer Unknown d(n) e(n)
tain statistical statements when the input sign@t) is sta- —”|  System _‘)@—’_’
tionary and ergodic. More precisely, it is shown in [10] that the = @)
state transition matrix I Finite-precision implementation ' y
1
u(n) : Gain Vector Part | !
F(n,0) = A(n)A(n—1)...A(1) (68) ——0—:—) e !
1
has an asymptotic constant eigendecomposition that can b Tt i“);"“'
used to decide the numerical stability of the original system. : —
Using the averaging technique, it is shown in [10] that nu- SEESEN Fﬂter’“(%)Pa“
merical stability of (65) is determined by the eigenvalues of Ww
lim,, o B[A(n)]. Z
A. Numerical Properties of the FPLS Algorithm Fig. 1. Block diagram of the system identification used for simulation.
For the FPLS algorithm, the state-space variables that invol -~ : .
the time-update recursions can be expressed by 2
_ am(n) o | I ‘ I Vbl d l !
®f(n)_ <Fm(n)> (69) %0 I M l JI
Substituting (1) into (5) and noticing thi, (n —1) = ym(n— " II| (I ‘
1k, (n — 1), we can write the first state-space variableas  *T
am(n) = (Im - k (n — 1) (n — 1)) -au 20Lo 4t;o 6(;0 st;o sa:gis 12:10 142)0 1sr|)o IB(IJO 2000
Xam(n—1) —u(n)k,,(n—1) (70) @)

wherel,,, is anm x m identity matrix. 08 . . . . . —— , T
For the second state-space variable, substituting (1) into (
we get

Fon(n)
= AFp(n— 1) + 4 (n — 1) (0% (n = Dap(n — 1))
+ 29 (n — Du(n)ul (n — Da,,(n — 1) 04 . . . . . . . . .
] 5 10 15 20 25 30 35 40 45 50
+ ’ym(n - 1)u2(n) (71) Samples

It is worth noting from (3) and (4) that the conversion factor (®)
¥m(n — 1) and the gain vectdk,,(n — 1) are not state-spaceFig. 2. (a) Input speech signal. (b) Impulse responses of the unknown system
variables because both of them have the relaﬁ'@ﬂ-l( ) _  before change (solid line) and after change (dashed line).

©m(n—1), which means that the roundoff errors accumulated in O(Fn(n))
a time sequence will be bounded for a limited order sequence —— )\ (76)
m. O(Fm(n—1))

From (67), the transition matrix of the forward predictor herefore,A;(n) can be written as
A (n) is obtained by differentiating the state-space model (69) As(n) = ( L, — kpn(n—1)ul(n-1) 0m> (77)
with respect to its state-space variables, which results in 29m(n — 1)nm(n)u ) Tn=1) X J°
@ (n)  _0(an(n)) Since0 < A < 1 andAg(n) is a block-lower-triangular, it
Af(n) = ( T U ) (72)  remains to be shown that the eigenvaluegifff,, — k,,(n —
am(n=1)) 9(Fm(n-1)) 1)uZ (n — 1)] are asymptotically all smaller than unity in mag-

where nitude.
dam(m) _ ;1 1 (n— 1)uZ (n— 1) (73 Forl—A<1,from [19], we can derive
a(;g(”(;);)) " Tim @ (n—1)~ (1- V)R (78)
O(F(n—1)) O (74) where ®,,(n — 1) = Yo anmitly,, (iuf (i), andR =
O(Fm(n)) E[un,(n — Duf (n — 1)].
I(am(n —1)) Sincek,,(n — 1) = &.1(n — 1)u,,(n — 1), it follows that
= 2y, (n — L)ug, (n —Tl)am(n ~ Lug,(n—1) Tim Efkp(n = uy(n = 1]~ (1= AL, (79)
+ 21 = Dulw)uf, (0 = 1)
= 2y (n — 1) ( T (n— Dan(n — 1) Consequently
+ u(n))ul (n—1) lim B[L,, — ky, (n — 1ug, (n — 1)]

= 2y (n — D) (n)ul (n — 1) (75) ~1I,—-(1-MNIL, =\, (80)
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Fig. 3. Numerical performances of the RLS, the LSL, and the BPLS algoritt¥ns: M/ = 50). The estimation erro#(n) of (a) RLS algorithm using double
precision, (b) RLS algorithm using 20-bit mantissa, (c) LSL algorithm using 16-bit mantissa, (d) LSL algorithm using 8-bit mantissa, (e) BRh® aigiog
16-bit mantissa, (f) the BPLS algorithm using 8-bit mantissa.

which confirms that all the eigenvalues BfA ;(n)] converge and prove that all the eigenvalues6fA,(n)] also converge

approximately to\ asn — oo. approximately to\ asn — oo.
B. Numerical Properties of the BPLS Algorithm C. Numerical Properties of the Fast PLS Algorithm
The state-space variables that involve the time-update recurthe numerical properties of the fast PLS algorithm are

sions in the BPLS algorithm are given by closely related to the PLS algorithm. From (39) and (62), we

cm(n) can see that the equations for extending the gain vector has the
Oy(n) = : (81) following common formula:

B, (n)

Substituting (6) into (10) and (7), respectively, and noticing that pn(n) = Qpx(n— 1)+ qy(n) (85)

ki (n) = ym(n)km(n), we have the two state-space variables
m(n) = (L — K (n)uZ (1)) €pm(n — 1) wherepy(n) stands forgy(n) or hy(n). The matrixQ is
" o " given by
—u(n —m)k,,(n) (82)

Bun(n) = ABy(n — 1) + Y (n) (uF, (n)cpn(n — 1)) oo ’

+ 29m(n)u(n — m)uy, (n)em(n — 1) Lo
+ Y (R)u® (n — m). (83) Q=]o0o . . - (86)
Notice also from (8) and (9) that the conversion faetgKn) 0 0 1 .

and the gain vectdk,,,(n) are not state-space variables because
they involve only the order-update recursions. : , .
Following the same p.rpcedure gs that of the FPLS algor.ith 'tSeIBC:yalljlsci)L;hzifr;ge??r\]/:h;iig gﬁ;:g;fg%@:gtng
we can write the transition matrix of the backward predict i§ stable. For the same reason, the conversion fagton) com-
Ap(n) as puted by (40) and (41) or (63) and (64) is also stable. Therefore,
A _{ Ln—kp(n)ul(n) 0, ga) 2 numerically stable performance of the extended gain vector
o(n) = 2Ym (n) P (n)ul (n) A (84) ky(n) can be expected.
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V. SIMULATION RESULT " I
. _

Computer simulations were carried out to confirm the validit  os ]

of our analysis and demonstrate the numerically stable perfE o e

mances of the PLS and the fast PLS algorithms. Since both 1< s 1

FPLS and the BPLS algorithms have very similar numerici -+ .

properties, only the BPLS and the fast BPLS algorithms we s ' - - s : : s

investigated. An adaptive system identification problem, whos ~ ° % T %0 de UM e e =

block diagram is shown in Fig. 1, was employed for the sim- (@)

ulation. The adaptive filter is divided into two parts. Since we : : , , , : : : :

want to investigate the numerical properties of the gain vectc

the gain vector part enclosed by the dashed line is comput | i ‘

by using a floating-point arithmetic that consists of an 8-bite»§ | ‘ ‘ } N AR

ponent and a variable mantissa (including a sign bit). The fi§ _ ‘ 1 ‘

tering part is computed by using double-precision arithmeti

Fig. 2(a) shows a speech signal that was used as the tap-in » . . , . , . , . ,

signal. Fig. 2(b) shows two impulse responses of a 12th-ord "° 20 40 60 s o ot teo o 2000

butterworth filter with different cutoff frequencies, which were b)

used as the unknown system before and after a sudden change

occurred at the number of 500 iterations. The number of t: T T T
weights of the adaptive filter was 50. The initial paraméter ' |
1, and the forgetting factor = 0.97 were used. For comparison ; N |
purposes, the RLS algorithm (shown in [19, p. 569, Tab. 13.15 ° et

the LSL algorithm with error feedback (shown in [19 , p. 687" °° 1

Tab. 15.5]), and the combination of the stabilized FRLS (wit -

a CompUtatlonal COSt @(SN), as Shown In [12 ’ p 251 Tab -1'50 200 400 600 8(;0 IO(I)(J 1200 14;)0 IS(IJO 15(‘)0 2000
7]), and Version 3 of the FNTF (SFNTF) algorithms were als. Herations

implemented using the same simulation conditions. The opti- (©

mally adjusted error feedback parametets= 1,02 = 1.2, 15 v * ~ ' * ; ' ' '

ando® = 1 were used in the SFRLS algorithm. 1 1
Fig. 3 shows the numerical performances of the RLS, tr_os 1

LSL, and the BPLS algorithms. As expected, the numerical pez o o

formance of the BPLS algorithm is very robust to roundoff er< s .

rors produced by finite-precision implementation. On the oth¢
hand, the numerical property of the RLS algorithm is serious .5

1 1 1 1 1 L L 1
200 400 600 800 1000 1200 1400 1600 1800 2000

affected by finite-precision arithmetic. The LSL algorithm alsc ’ Herations

has a well-behaved numerical performance. However, the accu- (d)

racy f)f the LSL algorithm seems inferior to that of the BPLns-ig. 4. Numerical performances of the SFNTF and the fast BPLS algorithms
algorithm when a lower wordlength was used. (N = 50, M = 10). The estimation erroe(n) of (a) the SFNTF algorithm

Fig. 4 shows the numerical performances of the SFNTF a#ging 24-bit mantissa, (b) SENTF algorithm using 12-bit mantissa, (c) fast BPLS
the fast BPLS algorithms. At first glance, no divergence of tr‘Pégonthm using 12-bit mantissa, (d) fast BPLS algorithm using 8-bit mantissa.
SFNTF algorithm occurred under finite-precision implementa-
tion. However, if we investigate the numerical behavior of thigading to some deviations of the residual error from the ideal
conversion factoryy(n), as shown in Fig. 5, we observe thaperformance. Nevertheless, the numerically stable perfor-
the value ofyy(n) becomes zero after some iterations, whichances of both the BPLS algorithm and its fast version are
means that the adaptive filter stops adaptation. This fact camaffected.
be seen clearly from Fig. 4(b). In this case, the SFNTF algo-
rithm has no ability to track the change of the unknown system
after 500 iterations. Although the numerical performance of the
SFRLS algorithm is found to be improved by increasing the for- A numerically stable fast Newton-type adaptive filter—the
getting factor) close to unity, this rescue method will degradéast PLS algorithm—has been proposed. The derivation is based
the tracking performance of the SFRLS algorithm. On the othen the order-recursive least-squares algorithm, and the result has
hand, no such unstable behaviorgf(n) was observed in the shown to be equivalent to the FNTF algorithm. However, the
fast BPLS algorithm, which results in a much improved numegerivation presented in this paper is direct and easier to under-
ical and tracking performance of the fast BPLS algorithm constand. The numerical properties of the PLS and the fast PLS
pared with the SFNTF algorithm. algorithms have been studied by using the linear time-variant

We notice from Figs. 3(f) and 4(d) that the accuracy of th&tate-space method. The transition matrices of the PLS algo-
BPLS and the fast BPLS algorithms is decreased when thilahm and its fast version have been derived, and the eigenvalues
number of mantissa bits used for implementation is reducemf,the ensemble average of these transition matrices have been

VI. CONCLUSION
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The conversion factoey x () of (@) SFNTF algorithm using 24-bit mantissa, (b)
SFNTF algorithm using 12-bit mantissa, (c) fast BPLS algorithm using 12—bit[19]
mantissa, (d) fast BPLS algorithm using 8-bit mantissa.

[20]

shown all to be asymptotically equal 0 As a result, the PLS
algorithm and its fast version can provide much-improved nu-
merical performances compared with the RLS algorithm and the
SFENTF algorithm. Therefore, the PLS algorithm may be used
for replacing the RLS algorithm, and the fast PLS algorithm
be applied to various fields, such as within an acoustic ec
canceller, to provide a fast convergence rate and a numeric:
stable performance with less computation.
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