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A Numerically Stable Fast Newton-Type
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Abstract—This paper presents a numerically stable fast
Newton-type adaptive filter algorithm. Two problems are dealt
with in the paper. First, we derive the proposed algorithm from an
order-recursive least squares algorithm. The result of the proposed
algorithm is equivalent to that of the fast Newton transversal filter
(FNTF) algorithm. However, the derivation process is different.
Instead of extending a covariance matrix of the input based on the
min-max and the max-min criteria, the derivation shown in this
paper is to solve an optimum extension problem of the gain vector
based on the information of the th-order forward or backward
predictor. The derivation provides an intuitive explanation of the
FNTF algorithm, which may be easier to understand. Second, we
present stability analysis of the proposed algorithm using a linear
time-variant state-space method. We show that the proposed algo-
rithm has a well-analyzable stability structure, which is indicated
by a transition matrix. The eigenvalues of the ensemble average
of the transition matrix are proved all to be asymptotically less
than unity. This results in a much-improved numerical perfor-
mance of the proposed algorithm compared with the combination
of the stabilized fast recursive least squares (SFRLS) and the
FNTF algorithms. Computer simulations implemented by using
a finite-precision arithmetic have confirmed the validity of our
analysis.

Index Terms—Adaptive filter, FNTF algorithm, FRLS al-
gorithm, LSL algorithm, numerical stability, RLS algorithm,
stabilized FRLS algorithm.

I. INTRODUCTION

T HE recursive least squares (RLS) and the fast recursive
least squares (FRLS) algorithms are two well-known

approaches for solving the exact least squares solution in the
transversal adaptive filters. Unfortunately, both algorithms
suffer from the numerical instability problem under a fi-
nite-precision implementation [1]–[11]. In the RLS algorithm,
a well-known example is the loss of symmetry and positive def-
initeness of the inverse correlation matrix [1]–[4]. This causes
an explosive divergence of the RLS algorithm. On the other
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hand, the instability of the FRLS algorithm is mainly produced
by a hyperbolic rotation (causing the eigenvalues to exit the
unit circle) that has to be operated on the backward predictor in
order to obtain the recursive equations for computing the gain
vector [6], [7]. Several error feedback methods were proposed
for overcoming the instability problem of the FRLS algorithm
[10]–[12]. However, the stable performance obtained by the
error feedback mechanism is maintained, provided that the
forgetting factor is restricted to a range of ,
where denotes the order of the predictors [12]. This may
degrade the tracking ability of the FRLS algorithm.

In the FRLS algorithm, however, if we assume that the
recursions involve both order- and time-update, then the least
squares solution can be obtained by using either the forward
or backward predictor. Therefore, the stable structures of both
the forward predictor and the backward predictor are retained.
This leads to the algorithm we called the predictor-based least
squares (PLS) algorithm, which includes the forward PLS
(FPLS) and the backward PLS (BPLS) algorithms.

Although the PLS algorithm can be easily derived from the
FRLS algorithm, very few investigations concerning its numer-
ical properties are reported in the literature. In [13], we have in-
troduced the PLS algorithm and investigated its numerical per-
formance. It has been shown that three major instability sources
reported in the literature, including the numerical instability of
the conversion factor, the loss of symmetry, and the loss of pos-
itive definiteness of the inverse correlation matrix of the input,
do not exist in the PLS algorithm. This results in a much im-
proved numerical performance of the PLS algorithm compared
with the RLS algorithm.

Unfortunately, the computational load of the PLS algorithm is
. This makes it difficult to be implemented in real-time

applications, even using today’s DSP technology. In order to
overcome this difficulty, a fast PLS algorithm is derived in this
paper. The assumption for the fast PLS algorithm is the same as
that of the fast Newton transversal filter (FNTF) algorithm [14],
that is, if the input signal can be adequately modeled by an au-
toregressive of order , where can be selected much smaller
than the order of the adaptive filter, then the gain vector can
be extended from to based on the predictor and the gain
vector of order without sacrificing performance. However,
the derivation presented in this paper is different from that of
[14]. Instead of extending a covariance matrix of the input based
on the max-min and the min-max criteria that are somewhat dif-
ficult to understand, the derivation shown in this paper is to solve
an optimum extension problem of the gain vector based on the
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information of the th-order forward or backward predictor.
Hence, the derivation gives an intuitive explanation of the FNTF
algorithm.

The most important characteristics of the PLS algorithm and
its fast version are their excellent numerical properties. In the
paper, we adopt a linear time-variant state-space method for
their stability analysis. The transition matrices of the PLS algo-
rithm and its fast version are indicated, and their ensemble av-
erage is evaluated. The eigenvalues are shown all to be asymp-
totically less than unity. In [15] and [16], we gave the deriva-
tion of the fast BPLS algorithm and investigated its numerical
and convergence properties. In this paper, we will present re-
fined derivation and stability analysis for both the fast FPLS
and the fast BPLS algorithms. We will show the equivalence
between the proposed fast PLS algorithm and the FNTF algo-
rithm and compare the numerical performance of the fast PLS
algorithm with that of the combination of the stabilized FRLS
and the FNTF algorithms [we will hereinafter call the stabilized
FNTF (SFNTF) algorithm].

We notice that the least squares lattice (LSL) algorithm,
which is also an order-recursive adaptive filter, was reported
to have a well-behaved numerical performance [17]–[19]. The
PLS algorithm is different from the LSL algorithm in that it
provides an explicit relationship between the gain vector used in
the transversal filter and the predictors used in the lattice filter.
It is therefore possible to obtain a numerically well-behaved
transversal adaptive filter and reduce the computational cost by
exploiting the autoregressive property of the input signal that
may be modeled by a lower order of predictors. Therefore, the
PLS algorithm may be considered as the transversal counterpart
of the adaptive lattice filter.

The organization of this paper is as follows: The PLS algo-
rithm is introduced in the next section. The derivation of the fast
PLS algorithm is presented in Section III. In Section IV, the nu-
merical properties of the PLS and the fast PLS algorithms are
analyzed. In Section V, some computer simulations, which were
implemented by using a variety of wordlength arithmetic, were
carried out to confirm the stability analysis and show the numer-
ical performances among several typical least squares and fast
Newton-type algorithms. The conclusion remarks are given in
Section VI.

II. PREDICTOR-BASED LEAST SQUARESALGORITHM

The PLS algorithm can be derived from any version of the
FRLS algorithm. Since only one predictor, forward or back-
ward, is needed, we can write two versions of the PLS algorithm
by using the definitions and the symbols that are consistent with
those used in [19] as follows.

For both versions, when time compute the
order updates in the following sequence: , where

is the final order of the predictor.

A. Forward Predictor-Based Least Squares (FPLS) Algorithm

(1)

(2)

(3)

(4)

(5)

where is the forwarda priori prediction error, is
the minimum power of is the conversion factor,

is the normalized gain vector, is the tap-weight
vector of the forward predictor, and is the tap-input
vector.

B. Backward Predictor-Based Least Squares (BPLS)
Algorithm

(6)

(7)

(8)

(9)

(10)

where is the backwarda priori prediction error,
is the minimum power of , and is the tap-weight
vector of the backward predictor.

The filtering part is common for both the FPLS and BPLS
algorithms.

(11)

(12)

where is thea priori estimation error, is the desired
signal, and is the tap-weight vector of the adaptive filter.

To initialize the PLS algorithm at time , set

(13)

(14)

(15)

(16)

where , and is a small positive constant.
At each iteration , generate the first-order variables as

follows:

(17)

(18)

where is the first-order of the input sample correlation
matrix that satisfies

(19)

where .
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III. PLS-BASED FAST NEWTON ADAPTIVE FILTER ALGORITHM

The PLS-based fast Newton adaptive filter algorithm, which
we also call the fast PLS algorithm, can be derived based on
either the FPLS or the BPLS algorithm.

Assume that the input signal can be represented by an autore-
gressive model of order AR , implying that the use of
the predictor of order is adequate and that the tap weights of
the forward predictor or the backward predictor
that have order greater than are zeros. The problem is how
to extend the th-order normalized gain vector to the

th-order normalized gain vector based on the knowl-
edge of the th-order forward or backward predictor with op-
timum estimation and least increase of computation.

A. Fast FPLS Algorithm

For the fast FPLS algorithm, we want to show that when only
the information of the th-order forward predictor is available,
the optimum extension of the normalized gain vector for

satisfies the following equation:

(20)

To prove (20), we first compute the FPLS algorithm up to
the th order to obtain and the forward predictor

. Then, we write (4) for as

(21)

From the assumption, the last term of is zero, that
is

(22)

where denotes the elements of up to
the th order.

We want to determine the tap-weight vector of the forward
predictor or so that the forwarda
priori prediction error and its error power
can be minimized. Since

(23)

comparing (23) with (1), it is not difficult to see that when
, the minimum forwarda priori predic-

tion error (least squares solution) can be obtained. This
means that

(24)

On the other hand, from the definition of the forwarda pos-
teriori predictor error [19]

(25)

we can readily deduce that

(26)

Under the constraint of using and , from (2),
the minimum prediction error power we can get is

(27)

which means

(28)

Therefore, the optimum estimates of ,
and satisfy the following equation:

(29)

Substituting (29) into (21), we get

(30)

Continuing in this procedure, we can prove (20). Therefore,
the update equation for order of the normalized gain vector

can be written as

(31)

Notice from (31) that no additional computation is needed to
obtain , except for some delays when . This is
the key point that makes the computational reduction of the fast
FPLS algorithm possible.
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In summary, when only the information of theth-order for-
ward predictor is available, the optimum extension of the pre-
dictor for satisfies the following relations:

(32)

(33)

(34)

Based on the above relations, we can derive the extension of
the conversion factor that is needed for obtaining the gain
vector as follows.

From (2) and (3), we rewrite the order-update equation of
as

(35)

For , (35) is shown to be

(36)

Following this way, can be obtained by

(37)

The summations on the right side of (31) and (37) can be fur-
ther simplified. Let denote the summation part of (31);
then, we can write

(38)

where the recursive equation for is given by

(39)

For the same reason, let denote the summation part of
(37); then becomes

(40)

where is given by

(41)

We note that the results of (38)–(41) are equivalent to the
Version 2 of the FNTF algorithm.

B. Fast BPLS Algorithm

For the fast BPLS algorithm, the optimum extension of the
normalized gain vector for is shown by

(42)

To prove (42), we first compute and in
the BPLS algorithm. Then, we write (9) for as

(43)

From the assumption, the first term of is zero, that
is

(44)

where denotes the elements of up to
the th order.

We want to determine the tap-weight vector of the backward
predictor or so that the backwarda
priori prediction error and its error power
can be minimized. Since

(45)

from (6), we can see that the optimum predictor, which uses
to predict , is ,

which satisfies

(46)

where is the minimum prediction error (least squares
solution).

Comparing (45) with (46), we can see that the minimum pre-
diction error can be obtained by simply choosing

. That is

(47)

From the definition of the backwarda posteriori predictor
error [19]

(48)
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TABLE I
SUMMARY OF THE FAST PREDICTOR-BASED LEAST SQUARES(FAST PLS) ALGORITHM

we can easily deduce that

(49)

Under the constraint of using and , from
(7), the minimum prediction error power we can get is

(50)

which means

(51)

Therefore, the optimum estimates of
and satisfy the following equation:

(52)
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TABLE I (Continued)

Substituting (52) into (43), we have

(53)

Following the same procedure, (42) can be proved. Therefore,
the update equation for can be written as

(54)

Notice also from (54) that no additional computation is
needed for obtaining , except for some delays when

.
In summary, when only the information of the th-order

backward predictor is available, the optimum extension of the
predictor for satisfies the following relations:

(55)
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(56)

(57)

The extension of the conversion factor can be calcu-
lated as follows. From (7) and (8), we rewrite the order update
equation of as

(58)

For and using the relations of (55) and (56), (58)
can be written as

(59)

Following this procedure, can be obtained by

(60)

The summations on the right side of (54) and (60) can be fur-
ther simplified. Let denote the summation part of (54);
then, we have

(61)

where the recursive equation for is given by

(62)

Let denote the summation part of (60); then, can
be written as

(63)

where is given by

(64)

We note that the results of (61) to (64) are equivalent to the
Version 3 of the FNTF algorithm. Table I presents a summary
of the fast FPLS algorithm and the fast BPLS algorithm.

TABLE II
COMPUTATIONAL COST OFSEVERAL LEAST SQUARES AND FAST

NEWTON ALGORITHMS

C. Comparison of Computational Complexity

The computational cost of several typical least-squares
algorithms, which are addressed in the introduction part, are
listed in Table II (the cost includes only multiplications and
divisions). From Table II, we can see that the PLS algorithm
requires about 50% of the computational cost of the RLS
algorithm. The computational cost of the LSL algorithm with
error feedback is about . However, if the tap-weight
vector of the transversal filter is necessary, then the backward
predictor , which is computed by the least-squares ver-
sion of the Levinson–Durbin recursions, is required to link the
regression coefficients of the lattice filter and the tap weights
of the transversal filter, leading to an computational
load [19]. The fast PLS algorithm requires
computations, which is comparable to the SFNTF algorithm
when is small. This is usually satisfied in some applications
like acoustic echo cancellation, in which a speech signal is used
as the input [20]. Therefore, it may be desirable to use the fast
PLS algorithm to achieve a numerically stable performance.

IV. STABILITY ANALYSIS

The most important characteristics of the PLS algorithm and
the fast PLS algorithm are their excellent numerical properties.
In this section, we will prove these properties.

The prediction part of the PLS algorithm can be modeled by
the following nonlinear state-space form [10]

(65)

where and denote the state-space variables and the
tap-input vector, respectively. For a finite-precision implemen-
tation, roundoff errors are introduced so that

. Assuming that the errors are small, (65) can be lin-
earized in the presence of the roundoff errors, which leads to

(66)

where represents the instantaneous contribution of the
roundoff noise, and

(67)

This is a linear time-variant system with a signal-dependent
matrix. Therefore, it is difficult to make an exact statement
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about the deterministic stability. Nevertheless, we can make cer-
tain statistical statements when the input signal is sta-
tionary and ergodic. More precisely, it is shown in [10] that the
state transition matrix

(68)

has an asymptotic constant eigendecomposition that can be
used to decide the numerical stability of the original system.
Using the averaging technique, it is shown in [10] that nu-
merical stability of (65) is determined by the eigenvalues of

.

A. Numerical Properties of the FPLS Algorithm

For the FPLS algorithm, the state-space variables that involve
the time-update recursions can be expressed by

(69)

Substituting (1) into (5) and noticing that
, we can write the first state-space variable as

(70)

where is an identity matrix.
For the second state-space variable, substituting (1) into (2),

we get

(71)

It is worth noting from (3) and (4) that the conversion factor
and the gain vector are not state-space

variables because both of them have the relation
, which means that the roundoff errors accumulated in

a time sequence will be bounded for a limited order sequence
.
From (67), the transition matrix of the forward predictor

is obtained by differentiating the state-space model (69)
with respect to its state-space variables, which results in

(72)

where

(73)

(74)

(75)

Fig. 1. Block diagram of the system identification used for simulation.

(a)

(b)

Fig. 2. (a) Input speech signal. (b) Impulse responses of the unknown system
before change (solid line) and after change (dashed line).

(76)

Therefore, can be written as

(77)

Since and is a block-lower-triangular, it
remains to be shown that the eigenvalues of

are asymptotically all smaller than unity in mag-
nitude.

For , from [19], we can derive

(78)

where , and
.

Since , it follows that

(79)

Consequently

(80)
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Numerical performances of the RLS, the LSL, and the BPLS algorithms(N =M = 50). The estimation errore(n) of (a) RLS algorithm using double
precision, (b) RLS algorithm using 20-bit mantissa, (c) LSL algorithm using 16-bit mantissa, (d) LSL algorithm using 8-bit mantissa, (e) BPLS algorithm using
16-bit mantissa, (f) the BPLS algorithm using 8-bit mantissa.

which confirms that all the eigenvalues of converge
approximately to as .

B. Numerical Properties of the BPLS Algorithm

The state-space variables that involve the time-update recur-
sions in the BPLS algorithm are given by

(81)

Substituting (6) into (10) and (7), respectively, and noticing that
, we have the two state-space variables

(82)

(83)

Notice also from (8) and (9) that the conversion factor
and the gain vector are not state-space variables because
they involve only the order-update recursions.

Following the same procedure as that of the FPLS algorithm,
we can write the transition matrix of the backward predictor

as

(84)

and prove that all the eigenvalues of also converge
approximately to as .

C. Numerical Properties of the Fast PLS Algorithm

The numerical properties of the fast PLS algorithm are
closely related to the PLS algorithm. From (39) and (62), we
can see that the equations for extending the gain vector has the
following common formula:

(85)

where stands for or . The matrix is
given by

...

...
...

...
...

. . .
. . .

. ..

(86)

Since all of the eigenvalues of are zeros and is com-
puted by using either the FPLS or the BPLS algorithm,
is stable. For the same reason, the conversion factor com-
puted by (40) and (41) or (63) and (64) is also stable. Therefore,
a numerically stable performance of the extended gain vector

can be expected.
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V. SIMULATION RESULT

Computer simulations were carried out to confirm the validity
of our analysis and demonstrate the numerically stable perfor-
mances of the PLS and the fast PLS algorithms. Since both the
FPLS and the BPLS algorithms have very similar numerical
properties, only the BPLS and the fast BPLS algorithms were
investigated. An adaptive system identification problem, whose
block diagram is shown in Fig. 1, was employed for the sim-
ulation. The adaptive filter is divided into two parts. Since we
want to investigate the numerical properties of the gain vector,
the gain vector part enclosed by the dashed line is computed
by using a floating-point arithmetic that consists of an 8-bit ex-
ponent and a variable mantissa (including a sign bit). The fil-
tering part is computed by using double-precision arithmetic.
Fig. 2(a) shows a speech signal that was used as the tap-input
signal. Fig. 2(b) shows two impulse responses of a 12th-order
butterworth filter with different cutoff frequencies, which were
used as the unknown system before and after a sudden change
occurred at the number of 500 iterations. The number of tap
weights of the adaptive filter was 50. The initial parameter
, and the forgetting factor were used. For comparison

purposes, the RLS algorithm (shown in [19, p. 569, Tab. 13.1]),
the LSL algorithm with error feedback (shown in [19 , p. 687,
Tab. 15.5]), and the combination of the stabilized FRLS (with
a computational cost of , as shown in [12 , p. 25, Tab.
7]), and Version 3 of the FNTF (SFNTF) algorithms were also
implemented using the same simulation conditions. The opti-
mally adjusted error feedback parameters ,
and were used in the SFRLS algorithm.

Fig. 3 shows the numerical performances of the RLS, the
LSL, and the BPLS algorithms. As expected, the numerical per-
formance of the BPLS algorithm is very robust to roundoff er-
rors produced by finite-precision implementation. On the other
hand, the numerical property of the RLS algorithm is seriously
affected by finite-precision arithmetic. The LSL algorithm also
has a well-behaved numerical performance. However, the accu-
racy of the LSL algorithm seems inferior to that of the BPLS
algorithm when a lower wordlength was used.

Fig. 4 shows the numerical performances of the SFNTF and
the fast BPLS algorithms. At first glance, no divergence of the
SFNTF algorithm occurred under finite-precision implementa-
tion. However, if we investigate the numerical behavior of the
conversion factor , as shown in Fig. 5, we observe that
the value of becomes zero after some iterations, which
means that the adaptive filter stops adaptation. This fact can
be seen clearly from Fig. 4(b). In this case, the SFNTF algo-
rithm has no ability to track the change of the unknown system
after 500 iterations. Although the numerical performance of the
SFRLS algorithm is found to be improved by increasing the for-
getting factor close to unity, this rescue method will degrade
the tracking performance of the SFRLS algorithm. On the other
hand, no such unstable behavior of was observed in the
fast BPLS algorithm, which results in a much improved numer-
ical and tracking performance of the fast BPLS algorithm com-
pared with the SFNTF algorithm.

We notice from Figs. 3(f) and 4(d) that the accuracy of the
BPLS and the fast BPLS algorithms is decreased when the
number of mantissa bits used for implementation is reduced,

(a)

(b)

(c)

(d)

Fig. 4. Numerical performances of the SFNTF and the fast BPLS algorithms
(N = 50;M = 10). The estimation errore(n) of (a) the SFNTF algorithm
using 24-bit mantissa, (b) SFNTF algorithm using 12-bit mantissa, (c) fast BPLS
algorithm using 12-bit mantissa, (d) fast BPLS algorithm using 8-bit mantissa.

leading to some deviations of the residual error from the ideal
performance. Nevertheless, the numerically stable perfor-
mances of both the BPLS algorithm and its fast version are
unaffected.

VI. CONCLUSION

A numerically stable fast Newton-type adaptive filter—the
fast PLS algorithm—has been proposed. The derivation is based
on the order-recursive least-squares algorithm, and the result has
shown to be equivalent to the FNTF algorithm. However, the
derivation presented in this paper is direct and easier to under-
stand. The numerical properties of the PLS and the fast PLS
algorithms have been studied by using the linear time-variant
state-space method. The transition matrices of the PLS algo-
rithm and its fast version have been derived, and the eigenvalues
of the ensemble average of these transition matrices have been
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(a)

(b)

(c)

(d)

Fig. 5. Numerical performances of the conversion factor(N = 50;M = 10).
The conversion factor
 (n) of (a) SFNTF algorithm using 24-bit mantissa, (b)
SFNTF algorithm using 12-bit mantissa, (c) fast BPLS algorithm using 12-bit
mantissa, (d) fast BPLS algorithm using 8-bit mantissa.

shown all to be asymptotically equal to. As a result, the PLS
algorithm and its fast version can provide much-improved nu-
merical performances compared with the RLS algorithm and the
SFNTF algorithm. Therefore, the PLS algorithm may be used
for replacing the RLS algorithm, and the fast PLS algorithm
be applied to various fields, such as within an acoustic echo
canceller, to provide a fast convergence rate and a numerically
stable performance with less computation.
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