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A New IIR Nyquist Filter with Zero
Intersymbol Interference and Its Frequency
Response Approximation

KENJI NAKAYAMA, MEMBER, IEEE, AND TOSHIHIKO MIZUKAMI

Abstract — A new infinite impulse response (IIR) Nyquist filter with zero
intersymbol interference is proposed. The necessary and sufficient condi-
tions for the transfer function are obtained. The proposed IIR Nyquist
filter requires only frequency-domain optimization. Multistep optimization,
using the iterative Chebyshev approximation, is proposed. This method is
able to design a new kind of IIR Nyquist filter with the minimum order.
Numerical examples for 30- and 1S-percent rolloff rates are illustrated.
From these examples, it is confirmed that the IIR approach can reduce the
filter order and hardware size, compared with the conventional finite
impulse response (FIR) Nyquist filters. Its efficiency becomes marked for
high @ Nyquist filters.
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I. INTRODUCTION

YQUIST filters by which data spectrum is band
limited and intersymbol interference becomes mini-
mum, play a very important role in data transmission.
Several kinds of design approachs for Nyquist filters have
been proposed. In continuous time systems, Spaulding’s
method [1] using Temes-Gyi’s transfer function [2] able to
accomplish Chebyshev attenuation characteristics for the
given poles, and the improved Spaulding’s method pro-
posed by Yoshida and Ishizaki [3), by which an effective
stopband attenuation can be obtained, are very useful.
Recently, an advanced digital device technology has
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promoted transmission system digitalization. Digital
Nyquist filters become very important for such digital
modem systems. There are two kinds of structures for
digital filters, finite impulse response (FIR) filters and
infinite impulse response (IIR) filters. IIR Nyquist filter
designs can be obtained basically from that for continuous
time filters through the Z-transformation [4]. Conventional
ITR Nyquist filter design requires both time- and fre-
quency-response optimization. Due to many all-pass sec-
tions used for time-response optimization, a filter order
becomes high. Since sensitivity for an impulse response at
the Nyquist rate is very high, large coefficient wordlengths
are necessary. On the other hand, filter coefficient for FIR
filters corresponds to an impulse response directly. There-
fore, an exact zero crossing impulse response can be ob-
tained, and intersymbol interference becomes exactly zero
[51-{7]). Coefficient roundoff is insensitive for a time re-
sponse at the Nyquist rate and is not so sensitive for a
frequency response. Therefore, coefficient wordlengths can
be reduced. FIR filters, however, require high filter order
for a high Q frequency response. Hence they are not so
attractive for small rolloff rate Nyquist filters.

In this paper, a new IIR Nyquist filter design methed is
proposed, which has an exact zero crossing impulse re-
sponse. Zero intersymbol interference and insensitive coef-
ficient roundoff can be realized as well as FIR filters.
Moreover, a filter order can be reduced sufficiently for
small rolloff rate IIR Nyquist filters, compared with FIR
Nyquist filters.

Section 11 provides necessary and sufficient conditions
for an IIR transfer function with zero intersymbol inter-
ference. A design approach based on the above transfer
function is discussed in Section III. Numerical examples
for 30- and 15-percent rolloff rates are illustrated in Sec-
tion IV. Section IV also discusses a comparison between
FIR and the proposed IIR Nyquist filters with regard to
computational complexity and quantization error.

II. IIR TRANSFER FUNCTION WITH ZERO
INTERSYMBOL INTERFERENCE

A. Necessary and Sufficient Conditions

Fig. 1 shows a block diagram and filter responses for
Nyquist filters. X(z™) is the transform of data signal
whose speed is the Nyquist rate f,,. The sampling rate for
H(z) and Y(2) is f, which is M times as high as f,

f,i=Mfy,, M: integer (1)
zis
z= ej"’/f:. (2)
Fig. 1(b) shows a frequency response, where
2,=r2(-p) (32)
JA
Iy
Q.=n=2(1+p) (3b)
§
T=1/f, )
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Fig. 1. Concept for Nyquist filters. (a) Block diagram. (b) Frequency
response. (¢) Impulse response.

p indicates the rolloff rate. Necessary and sufficient condi-
tions by which an impulse response exactly zero crosses at
the Nyquist rate except for one point, are given as a
theorem in the following. The proof is given in Appendix.

Theorem

Necessary and sufficient conditions by which the im-
pulse response k, for H(z) given by (5a) satisfies (5b) and
(5¢) are given by either (6)—(8) or (9)-(11).!

N,
> a;z’

H(z)='3——, b =1 (5a)
> bz
i=0
h,=0,((n=K)), =0, and n# K (5b)
hx#0,  K: positive integer. (5¢)
(A) ((N))y=0 (6)
b, =0, ()2 #0 (7
Ayixm=ag-b,,  k:integer (8a)
a, #0. (8b)
(B) ((N;))yy=M—1and b, #0 (9)
b= bM[f,l bV 3 (10)
Agrim ™ A+ im—1" b =(bku—b(k—|w'bfl)
“(ax—ag_,'b;), k:integer
(11a)

'The former and latter conditions are called as Types A and B.
respectively, in the following discussion.

2((+)) s 1s modular operation with mod M.

3{ R} denotes the maximum integer not exceeding R where R is assumed
to be a real value.
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(11b)

The conditions h, =0 for i <0, a, =0 for i <0 and N, <i,
and b, =0 for i <0 and N, <i are tacitly held in this paper.

ak—‘aK_l'bl #0‘

B. Constraints on Zero- Pole Locations

The necessary and sufficient conditions for a, and b,
cause some constraints on zero-pole locations.

Type A

The denominator is a polynomial of z~*. Therefore,
poles become Mth order and are periodically located with
period 27/M. All numerator coefficients cannot be de-
termined independently. a . ,,( k #0) takes a value which
is zero or depends on the denominator coefficients. The
number of dependent numerator coefficients is [K /M ]+
[(N, — K)/M]. It means that the same number of zeros are
automatically determined after the rest of the zeros and the
denominator are given. Generally speaking, it is difficult to
control the dependent zero locations using the independent
parameters.

Type B

The denominator can be factorized into the two poly-
nomials Q,(z) and Q,(z™) as mentioned in Appendix.
0,(z™) is a polynomial of z™*, and has the same kind of
pole as in Type A. Q,(z) is a polynomial factor of 1—
bMz™™, and its pole is expressed by

2mi
z;=be'wr,

i=1,2,--- . M—1. (12)

In the numerator polynomial, independent and dependent
zeros exist as well as in Type A.

These constraints on the zero-pole locations have to be
taken into account in filter design procedures. The poles
given by Q,(z) in Type B, are located at stopband, and do
not contribute passband shaping. Consequently, Type B is
not suited to frequency-response optimization compared
with Type A.

C. Optimum Configuration for Nyquist Filters

As previously mentioned, the input and output signal
rates for a Nyquist filter are f, and f,(= Mf,, ), respectively.
It is considered as a signal rate transformation. Computa-
tional complexity for such a filter can be reduced by
constructing a filter in a parallel form using low rate
subfilters. Configurations for Types A and B are described
in the following.

Type A

From the conditions given by the Theorem, the transfer
function can be rewritten as follows:

M~
H(z)= 3
. i=0
F (k)

T H(zM)+ a7k

(13)

A sampling rate in the subfilter H,(z*) is the Nyquist rate

Iv-
Let H(z™) be

H(z")=P(z¥)/0(z"). (14)

X{z4 -

Fig. 2. Optimum configuration for new IIR Nyquist filters, using
Nyquist rate subfilters in parallel form. (a) Type A. (b) Type B.

Then

Nn-l
5

P(zM)= % @pimz M (15a)
k=0
Ny
M

Q(ZM)= 2 bkMz_kM' (15b)
k=0

Let the input and output be X(z*) and Y(z), respectively,

M-
S 2 H(2M)-X(2M))+ a2 X(2M).
#Fh

Y(z)=

(16)
Signal processing in each subfilter, that is H,(z*)- X(z"),
is carried out based on the Nyquist rate fy. When a
denominator is used for all subfilters in common, only one
block is required at the input side. Its transfer function is

M1
. 1 -
H(z)= ,'.2—.:0 z7'P(zM) Q(z”)+axz kK (7
FU(KNuy

A block diagram to implement (17) is shown in Fig. 2(a).

Type B

One of the denominators Q,(z), is a polynomial of z™'.
Thus Bellanger’s method [8] is required in order to break
down H(z) into low rate subfilters H(z*). Otherwise, it is
necessary to perform the denominator Q,(z) operation on
the sampling rate f,, after interleaving the output signals
from the block consist of 1/Q,(z*) and the numerator
low rate subfilters. In both methods, computational com-
plexity is increased, compared with Type A. The latter
transfer function becomes

1

—_— M —lP M l (18
”(z)’Q—,(z_){Zoz‘ !z )}Qz(zM) )

where
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M—-1 )
Q\(z)= 2 biz” (192)
j=0
8
0x(:M)= 3 bz (19b)
j=0
%]
Pi(zM)z 2 aiiem? kM (19¢c)

A block diagram for (18) is illustrated in Fig. 2(b).

III. APPROXIMATION PROCEDURE IN FREQUENCY
DoMaIN

The impulse response becomes exactly zero at the Nyquist
sampling points except for one point in the proposed IIR
Nyquist filters. Time response optimization, therefore, is
not required. The transfer function has to be optimized in
a frequency domain only. As previously discussed in Sec-
tion II, Types A and B transfer functions exist. Type A is
superior to Type B as regards frequency response optimiza-
tion and a hardware realization. The impulse response. in
Type A, is insensitive at the Nyquist sampling points for
finite coefficient and signal wordlengths. Type B, however,
gives the sensitive impulse response for both finite word-
lengths. Taking into account these considerations for Types
A and B, only the former is discussed with respect to the
optimization method.

Type A transfer function gives M th-order pole which is
located in both passband and stopband. Hence, the de-
nominator does not contribute to realizing the stopband
attenuation. It is used to shape the passband amplitude.
The stopband attenuation is mostly realized by the numer-
ator. Considering these properties, the following multistep
optimization method is proposed here. First, the numerator
is optimized to realize the stopband attenuation under the
condition for the numerator coefficients given by the Theo-
rem. Secondarily, the denominator is obtained from the
optimized numerator through the condition (8a). Optimiza-
tion is carried eut-gnce Hore as a whole transfer function
to realize the desired stopband attenuation. The optimiza-
tion algorithm at each step is based on the iterative
Chebyshev approximation proposed by Ishizaki-Watanabe
[9]. This algorithm efficiency is highly dependent on the
initial value for the parameters. A most important problem
is how to determine the initial value. A general flow chart
is shown in Fig. 3. The detailed algorithm for each step is
discussed in the following.

Step 1: Initial Numerator Value.

As discussed in Section II, it is very hard to initialize the
dependent zero at the desired location using the indepen-
dent zero through a few searching steps. So, it is not
suitable to initialize the numerator coefficients using the
tndependent zeros only. The aim of the numerator optimi-
zation is only to realize the stopband attenuation. The
numerator frequency response becomes low Q, in order to
accomplish the minimum filter order. Corresponding im-
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General flowchart for proposed multistep optimization method.
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Fig. 4. Example of initial numerator coefficient values in Step 1.

pulse response. that is coefficient, is broad band. From the
given condition, the first half of the numerator coefficient
set {a,}r, shown in Fig. 4, has the constraint, that is
ag_um =0, 0<k <[K/M]. Therefore, the ideal Nyquist
waveform with the given rolloff rate is employed as the
initial value for {a,}r, taking into account band-limitation
requirement in the frequency domain. On the other hand.
the latter half of it, {a,},, has no constraint in the numera-
tor optimization step. Then the coefficient set of a low Q
FIR filter which gives sufficient stopband attenuation, is
employed as the initial value for {a,};. The coefficient
value set is scaled so that the maximum value is 1 /M. In
addition, the initial value for {a,}, mostly determines the
pole locations in the fellowing steps. Through the iterative
Chebyshev approximation used here, the absolute value of
a, is optimized. Its sign, however, is not changed from that
for the initial value. An example for the relation between
the sign of b,,, obtained as ag.,,\ /ag, 0<i< N, /M, and
the number of poles located at the phases (radian) 0 and
«/M with period 27 /M is shown in Table 1. Two states for
the number of poles are considered. One of them is shown
with data only, and the other is shown with (-). Since, in
actual applications, b,, is sufficiently large compared with
both b, ,, and b, ,,, poles are mostly located at phases 0 and
n/M with period 27/M. Poles located in the other region
are not counted in Table I. The poles located at phase 0
with period 2@7/M are not effectively utilized to optimize
the frequency response, because it is canceled by a zero, as
shown in the numerical example in Section IV. Thus it is
desirable to locate the poles on the phase m/M with period
2@/M in order to accomplish the minimum filter order.
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TABLEI
RELATION BETWEEN SIGN OF DENOMINATOR COEFFICIENTS b,
AND POLE LOCATIONS

Prgselrcdion

Ne 1bw bam Bxw [T TNy
(N -* o] '
it o 2
+ - ]

+ + 4 o2} 31
3wt - ! 2
fs = |-
1* — « foi2y3 0

The initial value for {a;}, has to be determined from this
point of view.

Step 2: Numerator Optimization.

The numerator |P(e/“7)| optimization is carried out
through the iterative Chebyshev approximation, using the
initial value P("’(z) obtained in Step 1. Letting § represent
the maximum error, a set of linear inequalities can be
written to describe this minimax problem

W(el®)l| PP(e/0)|—1|<8 (20a)
R P(Z) e]wT f .
W(e}"’r) —P—(#(ej# <$, Wf‘(lTp/z)szgﬂ
minimize § (20b)

where W(e/*T) is a weighting function. ay_,,(0<k <
[K/M]) is fixed to zero during the optimization.

Step 3: Initial Denominator Value.

Initial denominator coefficients are obtained from the
optimized numerator P'?(z) using the following relation:

N, —K
B=afa/ad. =120 | ]| @

Furthermore, the initial value for H®(z) becomes

HO®(z)=PP(z)/Q%(z) (22a)
where
5]
M
o%(z)= T bRz (22b)

i=0

Step 4: Total Transfer Function Optimization.

The total transfer function is optimized through the
same algorithm as that used in Step 2, using the initial
value H®(z) obtained in Step 3. The minimax problem is
basically the same as that in Step 2

W(e/ Y HW(e0)—1]<8 (23a)
H(4)(eij)' f
T IN :
W(e'*T) —H‘4’(e10) <38, ﬂf; (1+p)suwT<n
minimize §. (23b)

In this step, the parameters are optimized under the Type
A conditions given by the Theorem. The optimized H'¥(z)
in this step becomes the final solution.

In the proposed design procedure, determining the initial
value for the numerator in Step ! is the most important
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Fig. 5. Design example for new IIR Nyquist filter (Example 1). where
p=03, M=4, N, =15, N,=4, and K=9. (a) Frequency response
where, minimum attenuation A4, is 38 dB. (b) Impulse response. (c)
Zero-pole locations in z-plane.

phase. The Steps 2, 3, and 4 can be automatically carried
out. K and N, are determined by the given rolloff rate p.
M, and the minimum stopband attenuation A,. In the
actual design procedure, it is necessary to prepare a nomo-
graph for K and N,, using p, M, and A, as parameters.

1V. DEesiGN EXAMPLE AND COMPARISON WITH FIR
FILTERS

A. Design Example

Example: 1. p=0.3(30 percent), M =4.

Minimum stopband attenuation of 38 dB is obtained
using K =9, N, =15, and N, =4. The frequency response,
impulse response, and zero-pole locations are shown in Fig.
5. The zero located outside the unit circle in the passband
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Fig. 6. Design example for new IIR Nyquist filter (Example 2), where
p=0.15, M =4, N, =17, N,=4, and K=10. (a) Frequency response.
where A, =33 dB. (b) Impulse response. (c) Zero-pole locations in
z-plane.

can be considered to be utilized for equalizing group delay
distortion, as a result. Hence the group delay becomes
almost flat in the passband. The numerator and denomina-
tor coefficient values are shown in Table II. In this table,
the transfer function is taken as (15). Attention has to be
paid to the passband loss shaped by the pole located at
phase 7/4, nevertheless the passband optimization is not
carried out except at w7 =0 as described in Section [11.

Example: 2: p=0.15 (15 percent), M =4.

Minimum stopband attenuation of 33 dB is obtained,
using K =10, N, =17, and N, =4. The results are shown in
Fig. 6 and Table IIl. The attenuation after the coefficient
rounding-off are also shown in the same figure. All coeffi-
cients are rounded-off into 6 bits (Sign 1 bit, Magnitude 5
bits) after normalizing the maximum value to unity. These
wordlengths are called “effective wordlengths™ here.

Fig. 7. Zero-pole locations in :z-plane for Example 3. where p =0.15,
M=4,N,=20,N,=8.and K=10. 4,15 33 dB.

TABLE II
NUMERATOR AND DENOMINATOR COEFFICIENT VALUES IN
ExXAMPLE 1. TRANSFER FUNCTION Is BASED ON (15)

30 |000842E] 0o

Gn

n

~

T8
5‘
0

Q00
N
o

'8
N

0z [-00188 |0,
as|-00232

Qa4 [-CO:994 o-.ioo’?zel
G [ 0022CE

a4 | 005148
ar| 01202
Ae| 01853 Do | 1O

De | 55305

ag |0 257

TABLE III
NUMERATOR AND DENOMINATOR COEFFICIENT VALUES IN
EXAMPLE 2. TRANSFER FUNCTION is BASED ON (15)

0o | COI44I | an
o, | 00023 0.

02803
5279
—_— 0| C2333
as |- 001620
0a |-0C1620 0
as [-C0iS43| 0,
_ Our
gy [ G04920C
0g | 01099
Gy {01783 | by | 1 O

b {0 BI4D

0:38¢
07934
003897

a0 |0 2375

In the above two examples, the pole is located at phase
/M with period 27/M. The following example illustrates
that a pole located at phase 0 with period 27/M is not
effectively utilized to optimize the frequency response.

Example: 3: p=0.15 (15 percent), M =4.

In this example, the following sign combination; sign
(b,, bg)=(+,—) is employed in order to locate a pole at
phase 0 with period 2#/M. K =10, N, =20, and N,=8
have to be required to accomplish the same attenuation as
Example 2. the impulse response is almost the same as that
for Example 2. The zero-pole locations are shown in Fig. 7.
Poles located at phase 0 with period 27/M are not effec-
tively utilized for frequency-response optimization, because
one of them, located in the passband, is exactly canceled
by a zero. This cancellation could be recognized through
other examples. Its theoretical analysis has not been
accomplished in this paper.

Comparing Examples 2 and 3, it can be recognized that
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Fig. 8& Design example for FIR Nyquist filter, where p =03, M=4,
and N=22. (a) Frequency response, where 4, =38 dB. (b) Impulse
response.

locating poles at phase #/M with period 27/M is useful
for minimizing the filter order. Zero-pole locations in the
Type B transfer function correspond to that of Fig. 7 after
removing the pole and zero which cancel each other at
phase 0. Type B can be recognized not to offer the opti-
mum zero-pole location compared with Type A in Fig. 6.

B. Comparison Between the New IIR and the FIR Nyquist
Filters

The conventional method to realize zero intersymbol
interference is FIR Nyquist filters. Their comparison, based
on filter order and computational complexity, is discussed
here. A two-step design method using the Remez-exchange
[10] and the iterative Chebyshev approximation has been
proposed [11], and is employed here. The design procedure
is explained briefly in the following.

Step 1: Remez- Exchange Approximation.

Let H(z) be a transfer function for FIR Nyquist filters

N
H(z)= 3 h,z7".

n=0

(24)

H(z) is approximated through the well-known Remez-
exchange algorithm. Let D(e/“7) be the desired frequency
response. In this step, | D(e/“7)] takes the following values:

|D(e*T)|=1,

Sw $7& -
0<eT<w(1-p) (25)
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Fig. 9. Design example for FIR Nyquist filier, where p =0.15, M =4,
and N =38 (a) Frequency response, where 4, =33 dB. (b) Impulse
response.

=05, wT=afy/f, (25b)
=0, ﬂ-';TN(l-E-p)éwT‘Sﬂ. (25¢)

Step 2: Iterative Chebyshev Approximation.

The result in the previous step is taken as the initial
value for H®(z), and h, is modified to zero for ((i — K )),,
=0 and i # K. The minimax problem is also represented as
follows:

W(e®)| HO(e/0))—1|<$
H(Z)( e/‘-’T)
H(2)(ej())

(26a)

W(eT) <s, wi;“;(1+p)§wrsw

(26b)

Design examples for FIR Nyquist filters, realizing the
same minimum stopband attenuations as the IIR type, are
shown in Figs. 8 and 9. Filter sizes become 23 and 39 taps
for 30- and 15-percent rolloff rates, respectively. Hardware
size for the IIR Nyquist filters can be reduced to 74 and 52
percent of that for the FIR Nyquist filters, based on the
previously described parallel form using the low rate sub-
filters. Advantage cannot be used of the coefficient symme-
try in FIR filters for the parallel form. The group delay, in
the IIR approach, is significantly reduced. It can be also
recognized that the IIR Nyquist filter efficiency becomes
more marked for high Q Nyquist filters.

minimize 8.
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Sensitivity

The minimum attenuations in the stopband caused by
the rounded-off coefficients for both IIR and FIR filters
are shown in Fig. 10. They are almost the same except for
the shortest wordlengths. The minimum attenuation ap-
pears around wT=7/M with .2a/M in the IIR Nyquist
filters as shown in Fig. 6(a). On the other hand, Fig. 9(a)
shows that it appears at many frequency points in the FIR
Nyquist filters. So, the average attenuation in the stopband
for the IIR approach is superior to that for the FIR
approach.

hy—y Ay
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Scaling and Roundoff Noise

The IIR Nyquist filter illustrated in Fig. 2(a) requires the
input signal scaling to prevent overflows in the denomina-
tor block. The scaling factors evaluated by the L norms
become 0.46 and 0.19 in the Examples 1 and 2, respec-
tively. The FIR Nyquist filters do not require the input
scaling in a direct form. The output roundoff noise in the
FIR type is a little larger than that for the IIR type. the
difference, however, is within 1 bit regards as signal word-
lengths.

V. CONCLUSION

A new IIR Nyquist filter with zero intersvmbol inter-
ference is proposed. Necessary and sufficient conditions
for a transfer function are obtained. A multistep design
method, based on the iterative Chebyshev approximation.
is proposed. This method makes it possible to design a new
kind of IIR Nyquist filter with the minimum order.
Numerical examples for 30- and 15-percent rolloff rates are
illustrated. From these examples, it is confirmed that the
proposed IIR Nyquist filter can reduce the filter order and
hardware size, compared with conventional FIR Nyquist
filters. Its efﬁmency is remarkable for high @ Nvquist
filters.
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APPENDIX

PROOF OF THEOREM
Let P(z) and Q(z) be a numerator and a denominator
polynomials, respectively. H(z) can be expanded using #,,
as follows:

N,
Y azt
P i= s —n
H=2El iz _ Sy ()
Q(Z) 4 . n=0
D bz
i=0
Equation (A1) can be written
Nn Nd o
Yoo Xor)( Eh)
i=0 i=0 n=0

Since (A2) is the identity of z, the relation between a,, b,,
and k, can be obtained by comparing the coefficients of
the same power of z~" in both sides of (A2). Necessary and
sufficient conditions are proved based on this relation.

{Necessary Condition)
Denominator Coefficients

From (A2), the following relation between b, and 4, is
obtained

Ryn_n, b, hy
avem=n, bf - h”_“‘ M (A3a)
N+(N= M~ N, bNd hNﬂ Ny— M
where
N, <N-1. (A3b)
In (A3). N is taken so as to satisfies (A4)
K<N-—N, (Ada)
((N-K)),, =0. (A4b)

Using the &, property given by (5), the right-hand side of
(A3) becomes (0.0,---.0), and the iMth (i=
L2,---[N,/M]) row in the coefficient matrix also be-
comes (0.0,- - -.0)". Equation (A3) is reduced by removing
the iMth row in the coefficient matrix, and b,,, in the
vector (b, by.- - -.by )', and expressed as follows:

Hoby=hy
where sizes for Hy, b,, and kg are (N; =[N, /M)X(N, —
[(N,/M), N,—[N,/M] and N,—[N,/M], respectively.
Equation (A5) has different solutions for the N, value.

Therefore, (A5) solving is carried out for three kinds of the
N, values.

(A5)

There exists the following linear dependency:
Ny
An—vajm =" th—HjM-:‘b,- J=0.1.---, N,_,.

=1
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If by, #0, h, other than the elements of the set {h,[n=N
+ jM—2,--- N+ jM— N,} has to be required to express
h 5 _1+,u as the linear combination of &,. It means that the
linear dependency does not exist in the H, matrix, and

det H,+0. (A8)
Since h is a zero vector in (AS5)
b, =0. (A9)

As a result, b, becomes zero, and is not consistent with the
above condition.It means that (A6) cannot become the
necessary condition for the given 4.

(i) ((Ng))4 =0. (A10)

From the same reason as the above state, the H, matrix
rank becomes N, — N, /M, and b, also becomes zero. In
this case, however, b, does not contain by, because of
((N)y =0. If by, #0, the nonzero solution, satisfies (A3),
exists. Therefore, b,=0 is the necessary condition for

(iii) (N))y=M-1. (A11)
h,, has the following linear dependency:
Ny-
hy-vijm=— 2 hy_yijm-itbys  J=0,1,--- N,
=1
(A12)

because Ay_,, 5, is zero for i= N, Equation (A12)
means hy_,,, is expressed as the linear combination of
h,(n=N+ jM—=2,--- N+ jM — N,). Therefore, the H,
matrix rank becomes less than N, —[N, /M|, and
det H,=0. (A13)
In this case, b, becomes an uncertain solution because h is
a zero vector. Equation (A13) is equivalent to the following
linear dependency:
Moo
2 hN—|+j:w'l.bl+| =0’
=0
(A14)
" Equation (A14) is equivalent to (A12). Comparing both
linear dependencies on the h,,, the necessary condition for
b; can be obtained.

If
b,#0 (A15)
(A14) can be rewritten as follows:
l Nd-l
hN—lﬂM:’E 2 Ayn-vejpm—ibivy- (Al6)

From (A12), and the &, condition, b, can be expressed as
follows:

b, = by b 40w (A17)
M

Let / be the minimum integer satisfying b, =0. When 1</,

the reduced coefficient matrix of (A5) obtained by remov-

ing the ith (i=1,.--,I) row, does not have the linear
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dependency, and its rank is full. by becomes zero, and the
N, condition cannot be satisfied.

Consequently. (AS)’s solutions are given by either (A10)
and (A9) or (Aill) and (Al7). They become also the
necessary conditions for the b, to satisfy (5).

Numerator Coefficients

The numerator coefficients a; can be expressed using b,
and A,, based on (A2) as follows:

hg 0 0
a, h, hg 1
a : : " 0 b,
a8 he ||
ay, : by,
hy, hn_, hN.-N,J
(A18a)
where N, < N, or
a, hg 0 0 1
a, h, h, b,
0 B N M T I
(A18Db)
where N,>N,.
Type A
ax_iar(k>0) can be expressed as follows:
Ny
Axim= 2 hgim—ibi: (A19)
i=0
In this case b, =0, ((i)),, #0, then
Ny
M
Ax-kMm = (A20)

hK—kM—xM'b:M'
i=0

From the condition for h,: hy_, 2 =0, the following
condition is obtained:

ki =0 (A21)
ay is expressed as follows:
Ny
M
ax =2 hx_imbiy- (A22)
i=0
Using the A, property, .
ax =hgby=hy (A23)
then it is necessary that a, becomes nonzero
ag #0. (A24)
Qg yp> (K>0) is expressed as follows:
Ny
M
Agaxm™= E B+ im—imDise- (A25)

i=0
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From (A21) and (A24),

N
Agsnm = Agbin k=1,2, '.ﬁd (A26a)
and
N
agrim =0, 37 <k. (A26b)

Equations (A21), (A24). and (A26) are the necessary condi-
tions for the a, in Type A.
Type B
From (A17) the denominator can be broken down into
two factors
‘ [A

L]
M
—kM
2 byrz
=0

o(z)=

M-1
( > b{z'f). (A27)
k j=0

|
v

a, is expressed as the convolution of b, and A ,. Using the
factorized denominator, g, is obtained by two convolution
steps as follows:
[5]
M M1,

a,= 2 bin 2 [SVIRY 1 (A28)
k=0 =0

a,—a,_,-b, can be expressed using &,_,,, (0< k) and A :

L

a,—a, b

Ny
M M-—1

= 2 bkM E (k:-kM~/'bli—h:‘l*khf—;'b{*]‘)

(A29a)

(A29b)

(bkM — b 'biv )h,-k.v- (A29c)

Applying the A, conditions to (A29c¢) the following neces-
sary conditions for the a, are obtained:

K1 ,
Ax—xm ~ Ag-xm-1"b1 =0, ]$k<[7‘7j (A30a)

g ~ay_yb,=hge=0 (A30Db)

- b= _ pM
Axrkm ~ Ag+im—1 bl_(bkM bk -y by )

(ag—ag_,"by). (A30c)
(Sufficient Condition)

Type A: ((N,;)),, =0.

Let h2 be the impulse response of the denominator
1/Q(z). Since Q(z) is a polynomial of ==, then A?
satisfies the following equation:

h2=0.  ((n)), =0. (A31)

The impulse response for H(z) can be obtained as the

convolution of € and a,

hy= 2 ahl_,. (A32)
=0
h is expressed as follows:
N,
he= 2 a,h%_, (A33)
=0
From (A31)
K
(3]
he= 2 ag_,yhQ,. (A34)
J=0
Using (A21). h; becomes
hy=ag. (A35)
From (A24). that is a, #0. (5¢) is satisfied
X,
By = 2 ah§ .. k>0. (A36)
-0
Using (A31)
K= kM
=]
hioim= 2 Gk—im—mhS (A37)
;=0
Applying (A21)
by =0. (A38)

The first half of (5b), where a, is the border, is satisfied.
X,

”

hxorst= 2 0h%eiy-e k>0 (A39a)
i=0
K+ kM
5]
= 2 AKskrf—M° h,QM . (A39b)
=0
Using (A26)
3
hgoim= 2 axb(k—,w’hgw (A40a)
;=0
=0 (A40b)
because h€,, satisfies the following relation:
4
2 b{k—JlM'th:O' 0<k. (A41)

;=0

The latter half of (5) is satisfied. The necessary conditions
given by (A9). (A10). (A21), (A24). and (A26) are proved
to be sufficient conditions. They are summarized as (6), (7).
and (8) in the theorem.

Tvpe B((N,)yy=M—1

The denominator Q(:z) is broken down into two factors.
as shown in (A27), thus:

]
e

DO IVE

M= )
( > b{:"). (A27)
. j=0
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Let the first and second terms be Q,(z) and Q,(z™),
respectively. Q,(z) can be rewritten as follows:

1 1=bz!
0z) 1-bizv

The impulse response g* for 1 /(1 — b¥z~*) satisfies

-(A42)

ar=bl, ((n)),=0 (Ad3a)
=0, ((n))s 0. (A43b)
The impulse response g, for 1/Q,(z) is
4.=4, —bq;_,. (Ad4)
Applying (A43)
@n = pa( = 1)} (Ad5)
where .
1=l ((m)y=0.1 (Ad6a)
=0, ((n))y=2.3,---,.M—1, and n<0.
| (A46b)

The impulse response h? for P(2)/Q,(z) is expressed using
q, and (A45)
N,

B

h: = alqﬂ—l (‘A47a)
=0
N,
=Y au, (- (A4TD)
=0

The impulse response h,, for H(z)= P(z)/Q(z) is obtained
as the convolution of h* and the 1/Q,(2™™) impulse
response as follows:
Ny
3]

h,=h,— 2 VI Ve

=1

(A48)

hy is calculated at first, and A, is obtained by (A48) using
k.
From (A47) h%_, ,,-(0< k) becomes
K— kM

h’;\’ﬁ\M = 2 a:P'K—kM~1( - ])(,:JK_MI-”)'blxnk‘v-'-
t=0
(A49)
Applying (A46)
K—kM
5]
Px—in = 2 (aK—k.V—mM Qg jar-mp-1"by )bTM-
m=0
(A50)
From the necessary condition for the a,, that is (A30)
hk-im =0 (A51)
hY is
K -
Re= 3 apy_ (—1DETPpK-1 (AS52a)
i=0
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=aK_aK_|‘b| (A52b)
#0. (AS2¢c)
B+ ar(0<k)is
K+kM Ke kM i '
Rhown= 2 @ultgppp— (= 1) T TV pRokar=i
=0
(A53a)
k o
= 2 (aK+jM_aK+1M—l'bl)b(lk—l)M' (A53b)
Jj=0
From (A30) h%. ., becomes
k
Weviw= 2 (b= by bl g b1 (AS4)
=0

and can be rewritten as follows:

h% . =hyb 0<k<[N—"] (A55a)
K+kM KYk M M

N,
R oa =0, [ﬁ"]<k. (AS5b)

h,, is obtained through (A48) using the above results.

[3]

hy—iar=hMx—em— 2 hy_snr—ina by (AS6)
I=1
From (A51) hy_, ., becomes also zero
hg_weas=0, 0<k (A37)
N,
(%]
hy=h%— 2 Ry—inbiage (AS8)
1=1
From (A52) and (A57)
hy=h%#0 (A59)
N
%]
Agarmt =R xrin— 2 hioxar—mv by (A60)
I=1
h . a 15 Obtained at first
N,
M
By =Hkons— 2 hgene—ivbin (A6la)
I=1
=hiop—hy by (A61b)
Using (A55)
hyr=hgby —hyby,

h i +xar- (0< k) is obtained sequentially starting from A, ,,
as follows:

N,
Print =Hkoirs = hibiy, lsks[ﬁ“] (A63a)

Ny

B ins =h7(+k,wa[ﬁ]<k (A63b)
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at the same time (A64) is obtained

0<k. (A64)

Consequently, the h, conditions are satisfied, and the
necessary conditions for the b, and the a, given by (All),
(A15), (A17), and (A30) are proved to be sufficient condi-
tions. They are summarized as (9), (10), and (11). Q.E.D.

hyiin =0,
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