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Permuted Difference Coefficient Realization of FIR
Digital Filters

KENJI NAKAYAMA

Absrract— A new realization for FIR digital filters, using permuted
difference coefficients, is proposed in this paper. Its coefficients are
obtained as the difference between the successive values of the original
coefficients reordered in a sequence with falling magnitude. The pro-
posed realization can hold desirable properties in FIR fifters, such as an
exactly linear phase characteristic and stable implementation, and is ef-
fectively applied to a wide range filter response. Quantization error
analysis shows that the internal data word lengths must be somewhat
increased to maintain the same roundoff noise as in a direct form real-
ization. Computational complexity becomes about 23 percent and 18
percent for 99th- and 299th-order filters, taking the excess data word
lengths into account, compared with the direct form.

I. INTRODUCTION

FIR filters can exactly realize a linear phase response and
stable implementation. A high-order filter, however, is re-
quired for a high @ frequency response. Some limitation ap-
pears in a real time hardware realization. Therefore, computa-
tional complexity reduction in high-order FIR filters is very
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important. Several kinds of approaches to implement multi-
plying operations have been proposed by other simple ways,
such as distributed arithmetic [1]-[3] and residue number
systems [4]. The difference routing digital filter (DRDF) pro-
posed by Gerwen er al. is one approach, which can sufficiently
reduce multiplying operations for narrow-band and low 0 fil-
ters [5]. Since the resonator coefficient values are restricted
to integer, the obtainable filter responses are limited.

A new difference coefficient FIR digital filter realization,
which does not lose the desirable features for FIR filters,
such as a linear phase response and stable implementation, is
proposed in this paper. The new difference coefficients are
formed as the difference between the successive values of the
original coefficients reordered in a sequence with falling mag-
nitude. The proposed structure is called permuted difference
coefficient digital filter (PDC-DF) in this paper. It can be ef-
fectively applied to a wide range filter response. The PDC-DF
algorithm is described in Section II. Section III illustrates a
hardware realization. Quantization error analysis is discussed
in Section IV. Computational complexity and its numerical
examples are described in Sections V and VI, respectively.
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II. PDC-DF ALGORITHM

The PDC-DF algorithm can be summarized as follows: The
original coefficients are reordered in a sequence with falling
magnitude at first. New difference coefficients are formed as
the difference between successive values for the reordered co-
efficients. This process is repeated, and high-order difference
coefficients can be obtained.

Let x(n) and y(n) be the input and output signals for FIR fil-

ters, respectively. They satisfy
N-1
y(n)= 3 hyx(n-m) (1)
m=0

where h,, is an impulse response, and » is assumed to be larger
than & - 1. There are two kinds of forms, the transversal form
and its transposed form. The PDC-DF algorithm can be ap-
plied to both forms. The transposed form can be obtained by
reversing the signal flow in the first form. Therefore, only the
transversal form is presented in this paper.

Let hy be the absolute value for h,,, and let k be the reor-
dered index. Then, A} satisfies the following conditions

hg = | (22)
and

0Shg ShYShy - S hy,. (2b)
Let x(n) be

xk(n) = sign (i) x(n - m). (3)
Equation (1) is rewritten using Ay and xj(n)

N-1
y(n) = k; Riexie(n). 4)

First-order permuted difference coefficients A(k” are defined
by

AV =pf-nE ., k=1,2--- N-1 (5a)
8’ =hg. (sb)
Using A(k') , ¥(n) can be expressed as
N-]
Y= 3 D () ®)
k=0
where
- N-Y o,
up'(n)= 3" x;(n). ™
i=k

u(k')(n) can be calculated through the following accumulation

W) =ul) () +xkm), k=0,1,--,N-2 (8a)
ul) (1) =x%_ (). (8b)

The number of additions in (8) is NV times.

Second-order permuted difference coefficients can be formed
in the same way as the first-order difference coefficients. Let
A’;m be A(,:), and / be the reordered index, that is

Ayt =ap (98)
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and

A AT < AT (9b)
Second-order difference coefficients Afz) are defined by

AP =AW AFYD =12, N- (10a)

A@ =30, (10b)
Using A}z), y(n) becomes

»n)= :Vf A - um) (i)

=0

where ufz)(n) is a partial sum of the reordered uf(’)(n), repre-
sented as uf(l)(n) whose multiplicand is Af(l)
N-1
uPy=3 uY@m). (12)
i=1

Equation (12) can be performed through N times additions as
follows:

uPm) =u@B @)y +ufPm), 1=0,1,---,N-2 (13a)
uiy | (n) =y (). (13b)

The PDC-DF is actually performed through the following
steps.

First-order PDC-DF Second-order PDC-DF
Step 1: (3) Step 1: (3)
Step 2: (8) Step 2: (8)
Step 3: (6) Step 3: (13)
Step 4: (11).

Higher order permuted difference coefficients can be formed
in the same way.

When the difference coefficients are rounded off, some of
them become zero because difference coefficient magnitudes
are well reduced from the original coefficients. A small num-
ber of difference coefficients can offer a small roundoff error
and low computational complexity. Since the discussions in
the following sections are carried out based on the reduced
numbers of the difference coefficients. The equations described
above are modified here.

Let N, and N, be the numbers of nonzero Af") and Afz),
respectively.

Equation (6) is rewritten

= S AR O 6"

1=N-N,

where uf(')(n) is ufcl)(n) reordered according to the magnitude
of Af"). uﬁ”(n) is calculated through (8).

Equation (11) becomes

N-1
ym= Y PO (11")
f=N-N,

where A;‘ @ and u}" m(n) are reordered A,(Z) and ufz)(n), re-
spectively.
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Equation (13) becomes
ufz)(n) = uff)l (n) +u; (')(n)
I=N-N, ,N-N +1,--- ,N-2 (13a)
U () = ux M (m). (13b")

The uftl)(n) and the ufz)(n) calculations require V times and
N, times additions, respectively. V, umes mulnplncauons are
performed to obtain the product ofA, and u, Yy as (11').

I11. HARDWARE REALIZATION

A hardware realization is described for the second-order PDC-
DF. The ninth-order filter is used to illustrate the structure.
The original coefficients, the first- and second-order difference
coefficients, are shown in Table I. The hardware reahzauon is
illustrated in Fig. 1. The numbers of nonzero A£ and A(z)
that is ¥, and ¥, become six and two, respectively. DMn is
a data mapping block, in which the input data are reordered
according to the corresponding coefficient magnitudes. The
data mapping block can be easily realized, using a random ac-
cess memory (RAM) together with aread only memory (ROM),
where address data are stored. The sign bit multiplier is simply
realized using an EX-OR gate only. A plus sign bitis O and a
minus sign bit is 1. Three examples are shown below.

Input  00.10101 Input 00.10101 Input 11.01010

sign (+) 00.00000 sign(-) 11.11111 sign(-) 11.11111
Output 00.10101

(@ (®) (©)

In the case of a minus sign bit, the output has error 11.11111,
that is 11.01010=11.01011 +11.11111 (b). In other words,
the minus sign multiplier, using an EX-OR gate only, produces
roundoff error, while no additions are required. The error,
however, is always constant, which is 11.11111 for example.
Then the filter output noise caused by the minus sign bit mul-
tipliers can be canceled exactly. Therefore, the sign bit multi-
pliers are not taken as the roundoff noise sources in this paper.
In this structure, the data mapping operalion from ! toj is
employed, in order to perfon'n the A, multiplication effec-
tively. The product of u, (n) and A ) calculation requires
N, times multiplications in a time mulup]exed hardware real-
ization. Therefore, &, data corresponding to the nonzero dif-
ference coefficients Afm are extracted to perform only V,
times multiplications.

The scaling factors are shown by S, (# = 1, 2, 3), in the same
figure. S, is included in the second-order difference coeffi-
cients A, They are used to minimize the output roundoff
noise in the PDC-DF, as discussed in the next section.

IV. QuaNTIZATION ERROR ANALYSIS
A. Sensitivity Analysis

There are two Kinds of rounding off methods for the per-
muted difference coefficients. One method is to round off the
original coefficients because the difference coefficient form-
ing process does not cause any roundoff error. The other
method is to use the original unrounded off coefficients in
the process of forming the difference coefficients and do the

Output 11.01010 Output 00.10101°
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TABLE 1
ORIGINAL AND PERMUTED DIFFERENCE COEFFICIENTS IN
NINTH-ORDER FILTER
m| btm [k| &t & fe] & aF 10| &F
ol 025 [[of oo 00 cl 00 00 o[ 00
1|-0625]1)1 025 | 025 [+| 00 00 i| oo
2|(-0375(2| 0375 | 0125 | 2] 00O [eXo} 2| oo
3| 0.875(3| 0375 | 00 3| 00 00 3| oo
4| 0375[4al| 05 0125 (4} 0125 | 0125 4] 0.0
5( 05 5| 0625 | 0125 | 5] 0125 | 0O 5| 0.0
6l oo (6| 06 | oo 610125 | 00 6| 0.0
7{-0875||7| 0875 | 025 7] 0125 | 0O 7| 00
8| 0e23/8| 0875 | 00 8! 025 | 0125 [ 8] 0125
9/ 10 |9o] 10 0125 | 9| 025 0.0 9| 0125
jxtn)  xin-m} i i Py
o 0 . 0 2}
X T ~—0
S @ '
| ) 2 0 | 1
& i
G 2 2 2 2
X + —
g
X)={+] 3 2 o t2) x )
T f ugin} jin)
4 4 ot LA 3__°
4 f
8 D= ORs] 5o
& !
6 6 % D & G [} &
T -t
& 7 )4 Sl LA 7
T ] 0.i28
e 8 LR 8 8 8 1
o 9 S 9025 Z Y("')
m) W_J(kh’. tol — TTINTY) e My S5
sign(hg)  OM2 4j-Sz

Fig. 1. Second-order PDC-DF hardware realization for ninth-order fil-
ter shown in Table 1.

rounding off on the final result. Roundoff error analysis in
the former method is the same as in a direct realization. The
sensitivity analysis was discussed by Chan et al. [6], and the
results are used here.

Let €,, be the roundoff error in h,,; then the transfer func-
tion error A H(z) is expressed as

N=1
AHE)= 3. emz™ (14)
m=0

Since €, is assumed to be distributed uniformly in the region
[- (Ac/2), (Ac[2)), and be white noise, |AH(e/“’)|* can be es-
timated from the Parseval relation as

. N=} A“
|aH(E)|? = 3 €2, =N—=,
m=0 ]2

(15)

where f,. is the least significant bit. A, is expressed using the
original coefficient word lengths Ly and its maximum value
max,, |hm|

(16)

A; = max | hp, | 27k
m

Furthermore, maxy, |h,,| is related to bandwidth B, as dis-
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cussed in Section V

max |hp, | =28. (17)
m
From (15)-(17)
. N -
|AH(e!<)| =28 \/1;2 Lo (18)
Amplitude deviation is estimated by
[H(e7) + AH(e!®)| S |H(e!®)| + |AH(e')|. (19)

In this rounding off method, filter response deviation caused
by finite word length is more significant in the stopband than
in the passband.

Next, roundoff error in the latter method is analyzed. The
first-order PDC-DF is discussed at first.

Let e( ) be the roundofT error in A( ). It is distributed in the
region [ (Ac/2), (Ac/2)]. When no permutanons are required,
the transfer function error caused by ef‘ becomes

AHk(z)-ek) Z sign (h,,,) 27" (20)

When |AH) (e’ )| is assumed to be white, it can be expressed
from the Parseval relation as
otz - o (e N 2
IAHk(e"")I =(e ) D 1=(N-k)(e ) . (21)
m=k
If |[AH) (ei“’)| is not assumed to be white, the error becomes
larger than the estimation by (21). Since e(') and eﬂ) (k#k")

are independent from each other, the total transfer function
error can be estimated based on its power

, N-1 2
|AHE)|? = 5 |AH (') . (22)
k=0
From (21)
g (2
|AHE@)?2 =Y (V- k) () . (23)
k=0
Equation (23) is rewritten as
ol N-1 k (1)2
|AHE )P =3 5 () - (24)
k=0 i=0
Using the e“) variance, that is A2/ 12, (24) becomes
2 2
|aH(E)[? = Z k+1)- A— ¢xp2 ?4 (253)
and
Fwy | ~ Ac
|AHE')| =N\/2_4. (25b)

Even if some permutations are required, the filter response
deviation can be estimated by (25) under the condition that
|AH(e’)| is white. The second-order PDC-DF can be ana-
lyzed in the same way, and the following result is obtained

N-N +1,--
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|AH@E )| = N2 =2 A (26)

12
As a result, the former method can give less sensitivity. There-
fore, the discussions in the following sections are carried out
based on the former method.

B. Data Scaling and Output Roundoff Noise

It is well known that data must be scaled in order to prevent
overflows in the multiplier input in two’s-complement repre-
sentation. The following analysis was carried out based on
the second-order PDC-DF. The discussion for the first-order
PDC-DF can be obtained in the same manner. The scaling
factors are shown in Fig. 1. The internal scaling factor, S, is
introduced to reduce the output roundoff noise.

Scaling Factor: The data have to be scaled at certain points
to prevent overflows in the AY® and the sign bit multiplier
inputs; that is, ul* @ (n) and x;(n). S, is determmed by the
transfer function from the filter input to the A @ multiplier
input. It is highly dependent on the required permutations in
the second and the third data mapping blocks, that is DM2 and
DM3. The worst permutations for the output roundoff noise
are employed in this paper. When no permutatlons are re-
quired in the first data mapping block DM1, uk (n) is calcu-
lated by

WDy =5, 'S sign (hm)x(a - m). 27)

m=k

In the second data mapping block DM2, u(])(n) k=01,

N, - 1) are assumed to be transformed to u, *m)(I=N- N,,
-,N-1). In this permutation, the maximum
of |u;2)(n)| is bounded by

Nl
Z Si 3 |xtn-m)|

m=k

N -1
max [uPm) s Y |ul(m) 2
! k=0

N,-1
= Sl{ > (m+1)|x(n- m)|
m=0

N-1
+Y Ny |x(n- m)|}. (28)
m=N,
Using the maximum value of |x(n)l, (28) is rewritten as
NN, +1
max |u§2)(n)| < max |x(n)| S, {—'(7’—2+N1(N— Nl)}.
! n -
(29)

The scaling to guarantee against overflows in ufz)(n) by (29),
is overly pessimistic. On the other hand, it can be assumed
that no mutual correlation exists between the x(n) samples.
Therefore, the scalmg factor can be based on estimates of the
variance of u, (n) In other words, the data must be scaled
so that the variance of u, (n) satisfies

Var [u,z)(n)] <

Var [x(n)] (30)
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The variance of u}z)(n) is obtained by

Var [u®(n)] £ Var [x(m)] (51)

N,-1
{ S (m+ 1+ NIV - N.)}

m=0

= Var [x(n)] S£)* (VNNV} -2 ND) €)))

where the sign of equality is held for I=N-N,. In DM3,

uf&f . (n) is assumed to be transformed to one of
1

uf D) (V- N, SjEN- ).

From (30) and (31), the input scaling factor S; is determined
as

S, =(WNE- 2N (32)

The assumptions used in deriving (32) are summarized once
more in the following.

1) The worst permutations for the output roundoff noise

are employed.

2) The x(n) samples do not have a mutual correlation. That

is, they are independent from each other.

In order to reduce the output roundoff noise, the output scal-
ing factor S has to be decreased. It can be accomplished by
introducing the internal scaling factor S, which is included in
A;‘(z), as shown in Fig. 1. Furthermore, Ai*m - S, and (S3)7!
must be less than or equal to unity to prevent overflows in the
S5 input. Considering the above conditions, S, and S; are de-
termined as follows:

S, = min {(max @), (st )"} (33)
1

S; =max{max @M EH, 1} (34)
I

Output Roundoff Noise: The main roundoff noise sources
are the input scaling factor S, and the Af(z) multiplier. The
transfer functions from these noise sources to the filter output
are S,S3H(2) and S5, respectively. The output roundoff noise
becomes

a1 7
Nppc =EQ {Ef (S2S3 |H(€”m)|)2 dw +(S3)2N2}(35)

where the roundoff error is distributed uniformly in the region
[- (Ad[2), (Ad/2)]. Using the bandwidth B, the following re-
lation is obtained

1 v .
2= [ty deo= 28 G6)
From (32)-(34) and (36), (35) is rewritten as
Aj @)n2 2 3
Nppe EH {2B+ N, (m?x AN} (WY - 5 AaY),

(max (AP s WV - 2D (372)
!
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or

AZ
Nepc =5 {2BIVWNT - VD +N,)

(max (AP 2 (VN3 - 2 NHIZ (37b)
{

The above derived formula for Mppc is based on the worst
permutations. Therefore, it is somewhat reduced in the actual
applications.

From the above result, the output roundoff noise is deter-
mined by the numbers of nonzero difference coefficients, the
bandwidth and the max, (Afz)). These factors are highly de-
pendent on filter characteristics. Their relations are discussed in
Section V and numerical examples are illustrated in Section V1.

V. CoMpPUTATIONAL COMPLEXITY
A. Computational Complexity

In the previous sections, the PDC-DF algorithm and the
quantization error analysis are discussed. Computational
complexity is discussed here, based on the above results. The
computational complexity can be considered to determine
hardware size and an execution time in actual realizations.
Therefore, it is highly dependent on the number of operations
and the internal data word lengths.

The number of additions required in the ug)(n) and the
ufz)(n) calculations given by (8) and (13'), are N and Ny, re-
spectively. N, times multiplications are required to obtain
the product of ufz)(n) and Afz) given by (11'). The internal
scaling factor can take the power of two, and is simply realized
using digital devices. Therefore, they are not counted in the
computational complexity.

Let Lppc be the Afz) word lengths, which are given by (38).
Ly are the h,, word lengths.

Lppc = Lo - l0g; (max | A |/m3x (a?y). (38)
m

The computational complexity for the PDC-DF is defined as
follows:
Oppc = Wepc(V + N,y + Lppc - N2)- (39

Wppc are the internal data word lengths in the PDC-DF, and
are expressed as

N
Wepe = Wo + logs (Afﬁi) (40)
where the first term is the base word length to accomplish the
desirable noise gain, and the second term indicates the output
roundoff noise contribution. Oppc corresponds to the number
of equivalent additions. The important feature of the PDC-DF
is to reduce the computational complexity from the conven-
tional method. In order to compare the PDC-DF computa-
tional complexity with that for a direct realization, the latter
is briefly stated here. The computational complexity becomes

0p =Wp(Lo + )N (41)
where Wp, are the internal data word lengths expressed as

Wp = Wy +logg M. (42)
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B. Relation Between Computational Complexity
and Filter Responses

The factors determining the computational complexity,
which are Wppe, V|, N, and Lppc, are mostly determined by
filter responses, or, in other words, the original coefficient dis-
tribution function. Therefore, the relation between the filter
response and the original coefficient distribution function is
discussed at first. The results are given as a lemma and its
proof is described in the Appendix.

Lemma: let the maximum, the mean, the variance, and the
standard variance of A, be max,, |y, |, E[hy], Var [hy,],and
SV{h, 1. They can be expressed, using filter length N and the
bandwidth B normalized by the sampling rate as follows:

max | iy, | =28 (43)
m
1
Elhp] ¥ LPF (44a)
=0: BPF (44b)
2B 1 2B
Var [h,, ] N VSN LPF (45a)
2B
= BFF (45b)
2B
SV[hm) ={Var [hy]}"/? = v (46)

From (38), Lppc is determined by max, (Afz)), which is
mainly determined by the difference between the large magni-
tude original coefficients, normalized by max,, |hm| and their
probability density. High probability density for the large mag-
nitude original coefﬁcnents gives small max, (Af ) and vice
versa. The small max, (A, ) can decrease Lp )DC On the other
hand, small magnitude values Ak and A, are mainly gen-
erated as the difference between the small magnitude original
coefficients.

When the original coefficients are rounded off, small mag-
nitude values A(k') and Afz) are likely to be zero. Thisindicates
that the numbers of nonzero difference coefficients V| and
N, are reduced from N. Hence, high probability density for
the small magnitude original coefficients gives small #, and
N,. The probability density for the large and the small mag-
nitude original coefficients can be evaluated by the ratio of
the standard variance and the maximum value of |A,, |

_ SV[hm) __ 1

= “7)

max |Ap|
m

The large magnitude D indicates high probability density for
the large magnitude original coefficients, and vice versa. From
(47), D is determined by two parameters B and NV, which spec-
ify the filter response and the filter length. The relation be-
tween the computational complexity given by (39) and these
parameters is discussed in detail in the following.
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Narrow-band filters: Since B is small, in other words D be-
comes large, the probability density for the large magnitude
original coefficients becomes high. It implies that Lppc is
small and N, and N, are not so reduced. ‘

Wide-band filters: D becomes small, and the small magni-
tude original coefficients have high probability density. There-
fore Lppc is not small, while N and NV, are well reduced.

The output roundoff noise Nppc is mainly determmed by
B, max, (A, ) N, and N,. Since B and max, (A, )are in-
versely proportional to V; and N,, Nppc is not so dependent
on B. The number of operations is determined by Lppc, Ny,
and N,. From the above discussion, Lppc is inversely propor-
tional to &, and V,. Therefore, the number of operations is
not dependent on B. The computational complexity Oppc is
determined by both the number of operations and the round-
off noise. Combining both factors, it can be estimated that
the computational complexity is not so dependent on the
bandwidth, that is, filter responses.

Filter length: D, N, and N, are well reduced in high-order
filters. Lppe is, however, almost the same as that for low-
order filters. The reason can be explained as follows: under
the same probability density for the original coefficients, the
high-order filters can give small value difference coefficients,
compared with low-order filters. Considering the contributions
of all factors, high-order filters can give a lower computational
complexity than low-order filters.

The results of this paragraph can be illustrated in Fig. 2, us-
ing the truncated ideal impulse responses for low-pass filters
with narrow and wide bands and a bandpass filter,

The lemma is based on the truncated ideal filter response
[7]). The above mentioned properties are, however, approxi-
mately held for the other FIR filters designed through the
Remez-exchange method [8], the linear programming approach
[9], and the minimum phase design method [10].

Other filters besides frequency selective filters, for example
an all-pass function, are not discussed here, One example is
illustrated in Section VI.

VI. NUMERICAL EXAMPLE

Numerical examples to show the coefficient distribution
function and the computational complexity for several kinds
of filter responses are illustrated. Comparison between the
PDC-DF and a direct realization is also discussed here. The
FIR filters used in the following discussions are as follows:
99th- and 299th-order low-pass filters and bandpass filters de-
signed through the Remez-exchange method, and a 252nd all-
pass function, whose group delay response is linear. The band-
width B is determined by a - 6 dB gain point.

Coefficient Distribution Function: Table II shows probabil-
ity density functions for |h,l, Ag‘l) and Af”. The vertical
and the horizontal axes imply the probability density of the co-
efficients in percentage and the coefficient value normalized
by max,, |h,,|, respectively. Lo are taken as 10 bits for the
99th filters and the all-pass function. 12 bits are taken for the
299th filters. From this table, the analytical results obtained
in Section V can be confirmed. Lppce, Ny, and NV, are shown
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Fig. 2. Truncated ideal filter responses. (a) and (b) Narrow-band LPF
(B = 0.1 Hz). (c) and (d) Wide-band LPF (B = 0.25 Hz). (e) and (f)

Narrow-band BPF (8 = 0.1 Hz).

1 Hz and 0.25 Hz, respectively.

in Fig. 3. N, and N, are normalized by N. Since, Lppc are
not normalized, there is about a 2 bit difference between the
99th and the 299th filters. This means that reductions in
Lppc, in both the 99th and the 299th filters, are almost the
same. From this result, the Lppc independency from filter
length can also be recognized. The obtained relation between
the computational complexity factors Lppc, ¥,, and N,, and
the bandwidth B and the filter length /V is also confirmed from
this figure.

Output Roundoff Noise: Fig. 4 shows the output roundoff
noises given by (37) in dB, that is, 10 log (NpDC/(A§/I2)), and
10 log (V) in a direct form, From this figure, the output round-
off noise is increased, compared with the direct realization.
Therefore, the excess data word lengths are required to main-
tain the same roundoff noise. For example, they are around

Sampling rate and fg are taken as

4 and 6 bits for the 99th and the 299th filters, respectively.
Since (37) is based on the worst permutations for the output
roundoff noise, as discussed in Section IV, it can be somewhat
decreased in the actual applications. These excess data word
lengths are included in the computational complexity Oppc,
as discussed in Section V.

Computational Complexity: The computational complexity,
evaluated by (39) is illustrated in Fig. 5, where Oppc is nor-
malized by Op, and Wp are taken as 16 bits. The excess data
word lengths are taken as 4 bits for the 99th filters and 6 bits
for the 299th filters, from the output roundoff noise shown in-
Fig. 4. They can be considered as the maximum excess data
word lengths. The normalized computational complexities be-
come around 23 percent and 18 percent for the 99th and the
299th filters, respectively. The Oppc dependency on the band-



276 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-30, NO. 2, APRIL 1982

TABLE 11

ProBaBiLITY DENsITY FUNCTIONS OF |Am|, AL anD AP, VErTiCAL AND
HorizonTaL AXES INDICATE ProBABILITY DENSITY IN PERCENT AND
COEFFICIENT VALUE NORMALIZED BY MaXm |/tm|. Lo ARE TAKEN AS

10 Bits For (a) AND {(c), AND 12 BiTs For (b).
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width B is small as discussed in Section V. The high-order fil-
ters can give small computational complexity. Table 111 shows
the numerical example for the all-pass function. The computa-
tional complexity reduction is about 80 percent, compared
with the direct realization.

The PDC-DF can be effectively applied to minimum phase
FIR filters in the same manner, because its coefficient distribu-
tion function is similar to that for linear phase FIR filters.
Consequently, it can be concluded that the proposed approach
is very useful for a wide-range filter response.
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Fig. 3. A,(z) word lengths Lppc and number of nonzero difference co-
efficients ¥ and N9. N, and N, are normalized by N. (a) LPF. (b)
BPF.
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Fig. 4. Output roundoff noise evaluated by 10 log (NpDc/(A§/12))
and 10 log & in dB. Worst permutations for output roundoff noise
are employed.

VII. CONCLUSION

FIR filters give desirable features, such as a linear phase re-
sponse and stable implementation, while high Q filters require
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Fig. 5. Computational complexity Oppc normalized by Op, where Wp
are taken as 16 bits,

TABLE 111
NUMERICAL EXAMPLE FOR 252ND ALL-Pass FUNCTION, WHOSE GROUP
DELAY 15 LINEAR

252n4 Ali-Pass Function

N 253
mgxlhml 0.t79

N, 37 %

N2 S %
mfx(.{i’ M s5.22x10
(Y. 4.9 bits
Nppc 65.3 dB
Oppc 20.4 %

very high computational complexity in a direct realization. In
this paper, a new difference coefficient digital filter is proposed
for such high-order filters, Its coefficients are formed as the
difference between the successive values of the original coeffi-
cients reordered in a sequence with falling magnitude. It is ef-
fectively applied to a wide-range filter response. The quantiza-
tion error analysis is discussed. Slightly large data word lengths
are required in the new approach to maintain the same roundoff
noise as in a direct realization. The computational complexi-
ties of the proposed realization become around 23 percent and
18 percent for the 99th and the 299th filters, respectively,
compared with the conventional method.

APPENDIX
PrOOF oF LEMMA

Proof is based on the truncated ideal filter response, using a
rectangular time window. This assumption does not lose gen-
erality for high-order FIR filters.

1) LPF: An ideal impulse response 4;(n) is expressed as

sin (27 8n)

Al
2w Bn (AD)

hi(n)=2B

FIR filter coefficients h,,, with filter length N, are obtained
by windowing 4;(n), as shown in Fig. 2(b). Let W(n) be a time
window,

o ),

(A2)
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Since
W) =1

then

max |hm | = h(N- y2) = 2B
m

(A3)

(A4)

where V is considered to be odd. When VN is even, the
max,, |hm[ is approximately 28 for linear phase FIR filters.
Let H(z) be the transfer function with the impulse response

where
® sin (7w Bn)
()= —. Al6
hi(n) = B nBn ( )
Hence
max |hm|=h(N-l/2)=28- (A17)
m
The mean value for h,,, becomes
L, = L ety =0 (A18)
N ngo hy, -FH(e )=0.
The variance of h,,, is
Var [hm] =E[hr2n] -E? (]
2B
=== Al9
S (A19)
Q.E.D.
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