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A Simultaneous Frequency and
Time-Domain Approximation Method for
Discrete-Time Filters
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Abstract —A simulitaneous frequenry- and time-domain approximation
method for discrete-time filters is proposed in this paper. In the proposed
method, transfer function coefficients are divided into two subsets, X, and
X,, which are employed for optimizing a time response and a frequency
response, respectively. Frequency and time responses are optimized through
the iterative Chebyshev approximation method and a method of solving
linear equations, respectively. At the rth iteration step, the maximum
frequency response error, which appeared at the (r —1)th step, is mini-
mized, and X{"~ 1 becomes X{”. X{" is obtained from linear equations
including X§” as a constant. The frequency response at the rth step is
evaluated using the above obtained X{"} and X{”. This means the opti-
mum time response is always guaranteed in the frequency-response ap-
proximation procedure.

A design example of a symmetrical impulse response shows the new
approach is more efficient than conventional methods from the filter order
reduction viewpoint.

I. INTRODUCTION

ISCRETE-TIME filters, such as digital, CCD, and

switched-capacitor filters, have become very important
for communication systems and other uses, due to the full
integration possibility. Filters employed in communication
systems, which transmit data or image signals, are usually
required to satisfy specifications in both frequency and
time domains. Therefore, simultaneous frequency- and
time-domain approximation methods are inherently neces-
sary design techniques.

Existing approaches to the above simultaneous ap-
proximation are mainly summarized as follows:

(1) Closed-form transfer functions are employed, which
provide the optimum time response for arbitrary frequency
response. A frequency response is approximated through
iterative methods [1], [2]. The obtainable time responses are
rather limited to, for instance, waveforms zero crossing at
equally spaced sampling points.

(2) Specific transfer functions are employed, which can
optimize one filter response and which do not affect the
other filter response.
all-pass functions and linear phase finite impulse response
(FIR) filters [3], [4]. Some constraints exist on pole—zero
locations in these transfer functions and prevent sufficient
reductions in filter orders.
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These transfer functions include

(3) The coefficient subset approximating stopband at-
tenuation is uniquely obtained from a closed-form transfer
function having the rest coefficient subset as a constant [5],
[6]. A time response is approximated through iterative
methods. Attainable filter responses are, however, re-
stricted to low-pass filters having equal-ripple stopband
attenuation.

In the above approaches, the attainable filter responses
are rather limited and some constraints on pole-zero loca-
tions exist. Furthermore, linear phase FIR filters and in-
finite impulse response (IIR) filters having a flat group
delay response, in some sense, are practically employed for
systems transmitting data and processing image signals
[7}-[9]. In this case, however, it is difficult to determine the
tolerance for group delay distortions, which guarantees the
minimum time response deviation.

The approach proposed in this paper basically employs
the first approach and extends the attainable filter re-
sponses by employing a method of solving linear equations
in a time domain. As is well known, the transfer function
coefficients are linearly related to the impulse response in
discrete-time filters. Many approximation techniques in a
time domain, based on the above linear relations, have
been proposed [10]-[13). They are, however, directed to-
ward only time response approximation, and no simulta-
neous approximation methods have been reported in this
direction.

In the proposed method, the transfer function coeffi-
cients are divided into two subsets X, and X, which are
employed for approximating time and frequency responses.
respectively. A frequency response is optimized through
the iterative Chebyshev approximation [14] using the coef-
ficient subset X,. X, providing an optimum time response
is obtained through solving linear equations which include
X, as a constant. The frequency response is evaluated
using the above obtained X, and X,. This means that the
optimum time response is always guaranteed in the
frequency response approximation procedure. This method
allows using two kinds of error criteria. They are exact
interpolation, where no errors are caused, and the mean
square error.

Section II describes the time response approximation
through solving linear equations. A simultaneous frequency-
and time-domain approximation algorithm is provided in
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Section III following a flowchart. Finally, a design example
of a symmetrical impulse response is illustrated in Section
IV. Comparison between the proposed and conventional
methods are discussed, from the circuit complexity reduc-
tion viewpoint.

II. TiME RESPONSE APPROXIMATION BY SOLVING
LINEAR EQUATIONS

Time response targets are mainly classified into the
following two categories.

1) Desired time response values are specified.

2) Desired time response figures are specified.
The first category includes, for instance, the Nyquist wave-
form zero crossing at equally spaced sampling points.
Symmetrical impulse responses and minimum moment im-
pulse responses are included in the second category.

In the proposed method, a transfer function H(z) is
expressed as

_ P(2)

#(z) = 5256()
where f, is a sampling frequency. P(z) and Q(z) are
polynomials in z~! and G(z) is a rational function in z 7%
They are further expressed as

z=exp(j2af/fs) (1)

N, -1
P(z)= Y pz°" (2a)
n=0
N,-1
Q(z)= X ¢.27", go=1 (2b)
n=0
T (20)
Q(Z) n=0
N, -1
2 ezt
G(z)= _::_01 =3 gz " by=1. (2d)
¥ bz "
n=0

P(z)/Q(z) and G(z) are used for approximating a time
response and a frequency response, respectively. In other
words, the coefficient subsets X; and X, consist of the
coefficients of P(z)/Q(z) and G(z), respectively.

A. Time Response Values Specified

Letting d,, 0<n< N,—1 be a desired time response,
time response approximation can be generally formulated
so as to minimize

1/p

Ny -1
ep={ Z lhn_dnlp} (3)
n=0

where 4, is an impulse response, that is the inverse z-trans-
form of H(z),

o
H(z)= Y h,z7".
n=0

By using p,, g, and g,, h, is expressed as
h"=pn*-q-n*g" (5)

(4)

1003

where the operation designated by the symbol * means the
convolution sum. From (3) and (5),

N, -1 ir
ep={ Z Ipn*qn*gn_dnlp} .

n=0

(6)

In (6), g, is assumed to be fixed as will be described in the
next section. The error evaluation e, is usually formulated
as a high-order equation of p, and g,. However, it is
possible to express e, as a linear equation of p, and g, by
selecting appropriate N,, N,, and p values.

N,=N,+N,-1:

In this case, the approximation error e, becomes exactly
zero at specified sampling points by using the coefficient
subset X; which is obtained through solving

pn*.q_n*gn_dn=0, OQHSNd-l (7)

Equation (7) can be rewritten using g, instead of g,, as
follows:

m

&
Z Pr8n-m— Z qmdn—m=dn’ 0<n<N4—1
m=1

m=0
(8)
ny=min{N,-1,n} (9a)
n,=min{N,~1,n}. (9b)

Equation (8) means N,-dimensional linear equations of p,,
and g,,. Thus when the number of the specified sampling
points N, is equal to the degrees of freedom in X, that is
N, + N,—1, time-response approximation can be carried
out through solving linear equations and no approximation
errors are caused.

N,>N,+ N, —1:

When N, is larger than the degrees of freedom in Xj,
error evaluation e, is required to apply the method of
solving linear equations. Since minimizing e, is equiva-
lently carried out by the least mean square approximation,
the error evaluation can be replaced by

Ny-1

El= Z (pn*-q-n*gn_dn)z' (10)
n=10
Equation (10) is rewritten as
Ny—1 )
Ei= ¥ {§.*(pa*8.—4a*d.)} (11a)
n=0
Ne=1 fn—-m ny ny 2
= Z { ql( Z ngn-l—m— E qmdn-l—m)}
n=0\ /=0 m=0 m=0
(11b)
ny=min{N,—1,n—1} (12a)
ny=min{N,~1,n-1}. (12b)

Equation (11) is a set of high-order equations of p,, and
g,,- These equations, however, can be solved as linear
equations of p,, and g, through an iterative method [11].
In such a method, the values of g, in (11) have the results
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determined in the previous iteration step, and are fixed in
solving (11). On the other hand, the proposed simultaneous
approximation method employs an iterative approach in a
frequency domain, as described in the next section. There-
fore, the iterative procedure required in solving (11) can be
combined with the frequency-domain approximation.

Optimum p,, and ¢, values, in the least mean square
sense, are obtained by solving

JE,
m—o, m—O,l,-”,Np—l (133)
JE,
EZ—O, m~1,2,---,Nq—1. (13b)

From (11) and (13), the linear equations can be expressed
as

Ne=-1(n—m ny ny
Z { ql'gn—l—m( Z pmgn—l-m_ Z qmdn—l—m)}
m=20

n=0 \ =0 m=0
=0 (14a)
Ny=1n—m ay nat
> { QI'dn—l-m( Z Prm8n—t—m ™~ > qmdn—l—m)}
n=0\[=0 m=0 m=0
=0 (14b)
where g, have fixed values.
By letting g, be
go=1 (15a)
=0, 1<l (15b)

Equation (14) become exact linear equations for p,, and
q,,» s shown in (16), and no iterative procedure is required
{10}

Ny—-1 ny ny
> gn_m( Y PnBaem— L qmd.,-m)=0 (16a2)
m=90

n=0 m=0

Ny-1 ny ny

z d,,_m( Y PuBu-m— L qmdn_m) =0. (16b)
n=0 m=0 m=0

In this case, however, Q(z) becomes a weighting function
for impulse response error Ah,. The mean square error to
be minimized through solving (16) can be expressed as

Ny—-1 ny 2
El = Z ( Z quhn—m) (17)
n=0\m=0
where
d,=h,+Ah,. (18)

A relation between E; and E}* depends on desired re-
sponses in a time domain, and has been somewhat dis-
cussed [10].

In the above description, the desired time response d,, is
continuously given on the sampling points from n=0 to
N, —1. In the linear equations given by (8) and (14), the
denominator coefficient ¢, formulates the convolution sum
with d,.. Therefore, when d,, is specified on discontinuous
sampling points, (8) and (14) do not become linear equa-
tions for g¢,.
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B. Time Response Figure Specified

In this category, desired time response values are not
given. For simplicity, symmetrical impulse responses are
taken as desired figures for description.

Numerator Coefficients:

When X, includes only the P(z) coefficients, the im-
pulse response 4, can be expressed as

m
hn= Z pmgn—m’ (19)

m=0
Letting K be the sampling point corresponding to the
average delay time, that is the waveform center, the sym-

metrical impulse response condition is expressed as
neq (20)

where  is a set of sampling points at which the symmetri-
cal condition must be satisfied. From (19), (20) becomes

hl('+n = hK—n’

ny . ny_
Z Pn8k+n-m™ Z Pm8Kk—n-m* nEQ (21)
m=0 m=10
n,=min{N,-1,K+n} (22a)
n _=min{N,~1,K-n}. (22b)

When N,, which is the number of elements in the set £, is
equal to NV,, an exact symmetrical impulse response at the
specified sampling points can be obtained by solving the
linear equations given by (21) and (22).

On the other hand, when N, is larger than N,. the least
mean square approximation is required, as previously men-
tioned in the first category. The mean square error is
expressed as

"o ny_ 2
E2= Z ( Z PmEk+n-m— Z Pm8k—n-—m]| - (23)
nel2\m=0 m=20
The optimum solution for p,, is obtained by solving
dE,
-— = =0,1,---,N,—1. 24
3., 0, m=0,1, -1 (24)

Equation (24) is rewritten using (23), as follows:

a4
Z (gK-#n—m—-gK—n—m)( Z Pm8K+n-m

neg m=0
ny_
- E pmgK—n—m) =0, m=0,1,' N ',Np—].

m=0

(25)

Apparently, (25) is a set of linear equations of p,. Since
the impulse response h, is expressed as the convolution
sum of p,, with g,, as shown in (19), (23) has no weighting
function for Ak, evaluation.

Numerator and Denominator Coefficients:

When the denominator Q(z) is employed, the impulse
response is not expressed as a linear combination of the
denominator coefficients g,,. Furthermore, the desired time
response values are not specified, and substituting g, for
g, as in (8) and (11), is impossible.
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C. Specified Sampling Point Range

In the proposed method, the time response is approxi-
mated on the specified N, sampling points. Time response
samples on other sampling points cannot be controlled.
Therefore, N, must be carefully determined so as to cover
a sufficient time axis range. Detailed discussions on how to
determine N, closely depend on actual applications.

D. Siability

G(z) can be optimized with arbitrary structure in the
iterative approximation method [14]). Pole locations are
easily observed and can be controlled. On the other hand,
Q(z) structure essentially has a direct form in the time
response approximation, and the pole locations are not
directly observed. Therefore, the stability of Q(z) is not
assured in the proposed method as in the conventional
approaches [10}-[13]).

II1. SIMULTANEOUS APPROXIMATION ALGORITHM

In the proposed algorithm, time and frequency responses
are approximated through solving linear equations and
iterative methods, respectively. This section describes how
to combine both approximation processes.

A flowchart for the proposed algorithm is shown in Fig.
1. Details for each block are described in the following.

(1) Initial Guess of Filter Order

The optimum filter order allocation into a numerator
and a denominator, by which the minimum filter order can
be achieved as a whole, is a very important design problem.
It is, however, generally difficult to obtain a unified method
to give the optimum allocation for a wide range of filter
responses. Therefore, design charts, mainly based on expe-
rience laws, must be prepared for actual use.

(2) Initial Guess of H(z)

The optimum solution for any iterative method is highly
dependent on the initial guess. Therefore, it is important to
determine the initial guess as being near the optimum
solution.

Time Response Values Specified:

In order to identify a transfer function using frequency
responses, two kinds of responses are required, except for
the minimum phase condition. Therefore, when an ampli-
tude response and a time response are specified, phase
calculation is required at first. On the contrary, a time
response can uniquely identify a transfer function. For this
reason, when desired time response values are given, it is
computationally more efficient to determine the initial
guess through time response approximation. The conven-
tional approximation methods in a time domain [10]-[13]
can be directly applied to this initial guess calculation.

Time Response Figures Specified:

Basically speaking, it is impossible to calculate the initial
guess following the time response approximation in this
case. However, there are several cases where the corre-
sponding ideal time responses can be obtained. For exam-

[Initrat guess of filter order |

[}
Unitiol guess of i) |

(1]
ISelecv coelficien! subsets Xiond X2 —I

4}

Formulote lineor equotions 1o optimize
thime response  [A) X = C

F""""""’""'-""“1
]
t
i 1
T Ll
| 16) Il
T |E frequency error . !
. £ s W) lHle!™ - Dlw )l 1
]
[kd} 1
Is max(&,} decreosed") :
Y | €S !
i | Minimize the moximum error by '
i [tinear ramming - Xa"lexz'"" )
PP 2

9
Is frequency domoin
specification sansfied ?
- [0

‘———{increase_tilter order |

Flowchart for simultaneous frequency- and time-domain ap-

Fig. 1.
proximation method.

ple, a symmetrical time response is obtained assuming a
linear phase response. The Gaussian or the raised cosine
waveforms can be used as the ideal responses for the
minimum moment waveform. Furthermore, in the case of
Nyquist filters, the inverse z-transform of frequency re-
sponses with amplitude interpolated using the raised cosine
function in the transition band and with a linear phase
response can be utilized for the initial guess calculation.

(3) Select Coefficient Subsets X, and X,

Coefficient subsets X; and X, selections are dependent
on the initial guess for the transfer function H(z). When
the conventional time response approximation methods
[10)-{13] are employed, the resulting transfer function has
a direct form. Therefore, it must be divided into the form
(P(2)/Q(z))G(z) as given by (1). In other words, it is
necessary to select poles and zeros to be included in X;
and X, from the initial direct form transfer function. The
pole and zero selections are carried out, taking their contri-
butions to filter responses into account. For example, zeros
located in the stopband realize stopband attenuation.
Therefore, they are selected for the X, elements. Zeros
located in the passband mainly contribute to time response
optimization, and are included in X;. Poles are usually
located in the passband, and are classified into two groups.
One group mostly contributes to shaping an amplitude
response, and is included in X,. The other group contrib-
utes to time response optimization and becomes the X;
elements.

(4) Formulate Linear Equations to Optimize Time Response

After X; and X, have been selected, linear equations
utilized for approximating a time response can be uniquely
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formulated. One example is presented here. Letting Q(z)
be unity, an impulse response h, is expressed as
m

hn = Z pmgn—m‘

m=0

(26)

When desired time response values are given and N, is
equal to N, the linear equations become

8o 0 Po do

& 8o Py d

82 & 8o P2 || d,
8v,-1 8&n,-2 " 8o |\PNn,-1 dy

(27

The matrix [ A], the vectors X, and C in Steps (4) and (5)
are expressed as

gll) 8o 0
(=] & & & (283)
gN;—l gN:,-Z = 8o
X,=(po P P2 PN,—l)' (28b)
C=(d, d, d, dy_1)'. (28

The coefficient subset X, consists of the G(z) coefficients
a, and b,. Since the time response g, can be obtained
using a,, and b,, X, is equivalently included in g,.

(3)—(8) Iterative Chebyshev Approximation

In Steps (5)—(8) enclosed with a dashed line, a frequency
response is optimized through the iterative Chebyshev
approximation method [14]. A time response is also ap-
oroximated through solving linear equations in this proce-
dure. In Step (5), the linear equations include X{” opti-
mized in Step (8) as a constant. X" is, therefore, uniquely
determined for X{”. The amplitude response |H(e/*)| is
calculated using both X{" and X{” in Step (6). Therefore,
frequency response evaluation automatically includes the
optimum time response. W(w,) in Step (6) is a weighting
function for error evaluation. The iteration procedure is
finished when the maximum value for ¢; does not decrease
from that obtained in the previous iteration step in Step
(7). On the other hand, when the maximum value de-
creases, the above procedure is further repeated, based on
the possibility of attaining maximum error reduction. The
iterative Chebyshev approximation is carried out by em-
ploying a local linear programming technique at each
iteration step. The nonlinear function of X{” is approxi-
mately expressed with a linear function using the first-order
differential coefficients for X{". A further improved coeffi-
cient subset X{"*! is obtained in Step (8). The same
operations as those described above are repeated until the
frequency response satisfies the given specification.
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TABLEI
SPECIFICATIONS AND DESIGN PARAMETERS
Sampling frequency 400 Hz
Passband 0~49 Hz
Stopband 59200 Hz
Desired time Partially symmetricol
response impulse response
Filter order 2074, 1678, 12/12
clliocations
Average deiay time | 127,167,207, 24T
{T»1/400 Sec}

If the specification is not satisfied after the iterative
Chebyshev approximation with the initial filter order, then
the filter order is increased and the operations from Steps
(2)—(9) are repeated.

IV. DESIGN EXaAMPLES

A. Specifications and Design Parameters

Table I shows specifications and design parameters. The
frequency values do not make sense in actual applications,
but ratios among them specify the frequency response. A
symmetrical impuise response is taken as a desired time
response. The number of specified sampling points is equal
to the number of the X, elements. Degrees of freedom exist
for selecting filter order allocations and average delay time.
In this case, the average delay time means a sampling point
at which an impulse response has the maximum value.
Several values are assigned to these parameters, and the
optimum result having good performances is selected.

B. Initial Guess of X,

The ideal frequency response having an amplitude re-
sponse shown in Fig. 2(a) with linear phase is used for the
initial guess calculation. In this figure, f, and f, are taken
as 45 and 55 Hz, respectively. The initial guess is ap-
proximated through the Padé approximation in a time
domain, taking the corresponding impulse response shown
in Fig. 2(b) as a target. The exact symmetrical waveform
condition is imposed on the samples designated by the
symbol * in Fig. 2(b), which correspond to the peaks and
valleys in the ringing.

Select Coefficient Subsets X, and X,:

The numerator coefficients, corresponding to two zeros
which appear in the passband in the initial guess, are
selected as the X, elements. The remaining numerator and
denominator coefficients are included in X,.

C. Filter Responses Optimized

Among the design parameters, 12/12th-order allocation
and 20T average delay time provide the smallest passband
ripple and the highest stopband attenuation. In the case of
12 /12th-order, however, a pole and zero pair, which mostly
cancelled each other, appeared in the passband at the
iterative approximation procedure. Therefore, the ap-
proximation was continued after removing them. As a
result, the filter order became 11/11th. Fig. 3(a) and (b)
shows the optimized frequency and impulse responses,
respectively. The resulting pole-zero locations are shown
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Fig. 2. Ideal filter responses for initial guess calculation. (a) Amplitude

response. (b) Impulse response. Symbol A indicates average delay time.
Symmetrical conditions are imposed on samples designated by symbol
«. Sampling frequency is 400 Hz.

in Fig. 3(c). The numerator coefficients corresponding to
the zeros enclosed with a dashed line are used for the time
response approximation. As shown in Fig. 3(a), the group
delay distortion is well decreased, except for the transition
band, because the impulse response is approximated as a
symmetrical waveform.

D. Comparison between New and Conventional Approaches
Linear Phase FIR Filter:

A 73 tap filter length is required to achieve the same
frequency response shown in Fig. 3(a), using the Remez-
exchange method [4]. When the input signals have some
band limited spectra, an exact linear phase is not optimum,
from the filter order reduction viewpoint [15].

Elliptic Filter with All- Pass Function:

It is possible to optimize a time response using an
all-pass function without affecting an amplitude response
through the iterative method [14]. This approach was tried
during this study. A sixth-order elliptic filter and an
eighth-order all-pass function are required to achieve the
same results, as those shown in Fig. 3.

Circuit Complexity Comparison:

Numbers in operations such as adders, multipliers and
delay elements are listed in Table II, where the FIR filter
has a symmetrical direct form using 37 multipliers. Other
approaches employ a cascade form of biquad sections. The
elliptic filters and all-pass functions require three and two
multipliers, respectively, for the biquad implementation.
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Fig. 3. Filter responses designed through proposed method with
11 /11th-order transfer function, 20T average delay time and 400 Hz
sampling frequency. (2) Amplitude response in decibels. (b) Impulse
response. (c) Pole—zero locations.

The approach using elliptic filters and all-pass functions is
superior to the proposed method, when circuit complexity
is evaluated only based on the number of muitipliers. On
the other hand, when digital filters are implemented on
high level functional LST’s for digital signal processing [16]
or on signal processors including a hardware multiplier
[17], the circuit complexity is mainly determined by the
filter order. Furthermore, circuit complexities for other
sampled data filters, such as CCD and switched capacitor
filters [18], are mostly determined by the filter order. In
these cases, the proposed method becomes a more efficient
approach.
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TABLE 11
CireulT COMPLEXITY COMPARISON BETWEEN CONVENTIONAL
METHODS AND PROPOSED METHOD

Methods Linear chasel Elbptic  filter | Propased
Opergrions | FIR finter | 4R Ol 9955 | mornog
i 72 g /18 | st
Muitiptiers 37 7 22
Adders 72 28 22
oroments | 72 19 H

V. CONCLUSION

A simultaneous frequency- and time-domain approxima-
tion method for discrete-time filters is proposed. A time
response is approximated through solving linear equations.
The optimum solution is always guaranteed in a frequency
response approximation procedure. The frequency re-
sponse is optimized through the iterative Chebyshev ap-
proximation. This approach does not impose any con-
straints on pole—zero locations and filter responses. Hence.
filter order reductions can be achieved for a wide range of
filter responses.

Approximation error criteria in the proposed time re-
sponse approximation are restricted to two categories, in-
cluding exact interpolation and the mean square error. By
extending the method of solving linear equations to linear
programming techniques, a weighted mini—max error crite-
rion can be employed.
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