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A New Discrete Fourier Transform Algorithm
Using Butterfly Structure Fast Convolution

KENJI NAKAYAMA, SENIOR MEMBER, IEEE

Abstract—This paper proposes a new approach to computing the
discrete Fourier transform (DFT) with the power of 2 length using the
butterfly structure number thecretic transform (NTT). An algorithm
breaking down the DFT matrix into circular matrices with the power of 2
gize is newly introduced. The fast circular convclution, which is
implemented by the NTT based on the butterfly structure, can provide
significant reductions in the nnmber of computations, as well as a simple
and regular structure. The proposed algorithm can be successively
implemented following a simple flowchart using the reduced size
submatrices. Multiplicative complexity is reduced to about 21 percent of
that by the classical FFT algorithm, preserving almost the same number
of additions.

I. INTRODUCTION

EVERAL approaches to computing the discrete Fourier

transform (DFT) for a time sequence have been reported.
The classical fast Fourier transform (FFT) algorithm is based
on either decimations in frequency or in time, and can be
implemented on the simple butterfly structure {1}, [2]. Further
efforts on computational reductions in the FFT have been
reported with respect to combinations of radices [3], [4], and
to some modifications of multiplicands [5). Recently, both
decimations in frequency and in time have been combined to
yield computationally more efficient algorithms [6), ([7].
Furthermore, a conceptually new class of algorithms has been
proposed, which divides the DFT coefficient matrix into small
size circular matrices whose sizes are prime numbers. To
calculate these matrices, fast convolution algorithms has
been applied [8]-[11]. These algorithms can sufficiently
decrease multiplicative complexity at the expense of a small
number of additions and a simple and regular structure. The
number of linear multiplications required in the DFT calcula-
tion has been generally investigated, and proved to be bounded
by twice a transform length [12], {13].

On the other hand, one of the useful approaches to
computing the circular convolutions is to use the number
theoretic transform (NTT) [14]-[22]. When the transform
length is the power of 2, the NTT can be implemented by using
the power of 2 multiplications, which are simply realized with
circular shifts, as well as a simple butterfly structure [16].
Since the existing DFT algorithms, employing the fast
convolutions, are only applied to prime factor DFTs, the
above features of the NTT cannot be utilized.

This paper proposes a new algorithm for computing the
DFT with the power of 2 transform length. The DFT
coefficient matrix is broken down into small size circular
matrices through a newly introduced matrix reformation
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method. Since these submatrices also have the power of 2 size,
the butterfly structure NTT having the power of 2 multiplica-
tions can be successfully applied [23].

Section II briefly states the well known fast circular
convolution algorithm with the power of 2 length based on the
butterfly structure. In Section III, the new algorithm to break
down the DFT coefficient matrix into small size circular
matrices is provided. A general flowchart and block diagrams
showing how to carry out the proposed algorithm are
illustrated in Section IV. Section V discusses computational
complexity and shows numerical examples to compare per-
formances for proposed and conventional approaches.

M. Fast CircuLarR CONVOLUTION

Fast circular convolution algorithms based on the butterfly
structure [16], [24] are briefly stated here.

Letting x = (xo, X, =", Xnv-)' and y = (yo, J1» """,
Yn-1)' be input and output sequences, respectively, the
circular convolution is expressed as follows:

y=Hx (1a)
hy hy hy -+ hn_,y
hy-y ho hy -+ hy_s
H=1 : - (1b)
hy hy hy --- b
Ay hy hy -+ hy

where h = hy, hy, *--, hy_)' is an impulse response of a
system and (- - )’ denotes the transposed vector. H,(N) is used
to denote a matrix whose element at the ith row and kth
column is given by

h(, ky=h (i, k), i<k
=\hn(i, k), i>k. 2)
H,\(N) is further divided into submatrices as
A B
H\(N)= [w A]. &)

Submatrix 4 also includes the elements multiplied by A.
H\(N) can be reformed as a product of butterfly structure
transform matrices and a diagonal matrix as follows:

_|Aa B_| 12 -1
)= [w A] - [XI(N/z) M(N72) ]
[@a+xBy2 0 IN/2) K= 'I(N/2)
0 (A—XB)/2 | | -I(N/2) X-'I(N/2)

(4a)
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where J(N/2) is an (N/2) x (N/2) size unit matrix and X
satisfies

N2=)\, (4b)

Equation (4) shows the case of radix 2. A block diagram
showing (4a) execution is illustrated in Fig. 1. It is easily
proved that the matrices (4 + AB)/2 have the H,\(N/2)
structure. Therefore, these submatrices can be further divided
as (4). Repeating this matrix division procedure, the well
known fast circular convolution, based on the radix 2 butterfly
structure, is derived. The fast transform processes are mainly
classified into two categories, depending on number systems
to represent A and A. When the complex number system is
utilized, the fast transforms become the DFT and the inverse
DFT. On the other hand, when the residue number system is
employed, the number theoretic transform (NTT) and the
inverse NTT can be applied [16], {22].

II. New ALGORITHM TO OBTAIN CIRCULAR SUBMATRICES

A main problem is how to break down the DFT coefficient
matrix into circular submatrices with the power of 2 size. This
section introduces a new algorithm for the above problem. The
proposed algorithm consists of three processes, including
mixed decimations in frequency and in time [6], row and
column permutations, and changing the sign of matrix
elements.

A. Mixed Decimations in Frequency and in Time

First, in order to make preparations and to define the
notations used in the following discussions, the mixed decima-
tions in frequency and in time are briefly stated here.

Letting F(N) be the DFT coefficient matrix whose size is N
X N, and f(i, k) be an element of F (V) at the ith row and kth
column, then

JU, K)y=exp (—2nik/N), 0<i, kSN—-1 (5a)

j=v—1. (5b)

Let T){N) be a decimation matrix with a size of N x N for
radix M. An element f,{i, k) of T,(N) at the ith row and kth
column is given by

o ([T
e so([ ] ),

0<gi, kEN-1

(6a)

(6b)

where notations [i/M] and (- )y mean the maximum integer not
exceeding i/M and the residue number system operation with
the residue modulo N, respectively. The decimations in
frequency and in time are performed by multiplying F(N) by
T){N) from the left side and the right side, respectively.

Decimation in frequency: ThdN)F(N)

Decimation in time: F(N)T,(N).

Although arbitrary radices can be considered to divide the
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A+AB

Fig. 1. Elemental block diagram for radix 2 butierfly structure fast
convolution.

DFT matrix, radix 2 is used to describe the algorithm
throughout the paper in order to make discussions simple. The
results are easily extended to a case of other radices.
The DFT matrix F(N) is divided into submatrices by the
decimation in frequency as
_ | Fo(N72), Fy(N/2)
LINFN)= [F.(N/Z), -F,(N/z)] ™

where Fo(N/2) and F\(N/2) are submatrices with an (N/2) x
(N/2) size. Fy(N/2) has the same structure as F(N) with
reduced size

FyN/2)=F(N/2). 8

The decimation in frequency is further applied to dividing
Fy(N72). On the other hand, F;(IN/2) is broken down by the
decimation in time as

FIO(N/4)’ FII(N/4) (9)
F\o(N/8), —F,(N/4)

where Fio(N/4) and F\,(N/4) are submatrices with an (N/4)
X (N/4) size. Fyo(N/4) has the
same structure as F;(N/2) with the reduced size

Fio(N/4)=F,(N/4). (10)

Therefore, Fio(N/4) is further broken down through the
decimation in time. The matrix F,,(N/4) is transformed into
the circular convolution matrix at the second stage, that is,
H_,(N/8) defined by (1) and (2). It is possible to transform
the submatrices, obtained after further decimations, into the
circular matrices at the mth stages (2 < m). In this paper,
however, the matrix transform from F;,(N/4) to H_ (N/8) is
employed to describe the proposed algorithm. Extending the
discussions to a general case is straightforward, and some
comments are given at the end of this section.

FIN/2)THN/2)= [

B. Matrix Reformation from F,,(N/4) to H_,(N/8)

Letting g (i, k) be an element of F|,(N/4) at the ith row and
kth column, it can be expressed from (7) and (9) as

g(, kK)=exp (—j2n(2i+1)(2k+1)/N)

, N

First, two theorems are given which show properties of
F(N/4) and will be utilized for deriving a matrix reformation
procedure.
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Theorem I: Letting g (i, k) be expressed by

g(i, k)=exp (—j2mq(, k)/N), q(, k) : odd integer,

12)
q(i, k) satisfies
(qG, KInp=2n+1, OSnS]—;—,—l (13a)
(g, KON, k' Nnn, k2K (13b)
(@G, KNna#gl’s Kinn, i#17. (13c)

Proofs for the theorems introduced in this paper are all
given in the Appendixes.
Theorem 2: An integer n satisfying

= N N
((2n+l)8)N=E+l, 0<n<-2——l (14)
always exists.

Next, the element g (0, 0) is assumed to be fixed in the row
and column permutation process for Fyy(N/4). The circular
matrices not satisfying this assumption can be easily obtained
by further permuting the rows or columns.

From the F,,(N/4) properties given by Theorems 1 and 2,
the next theorem concerning how to permute the rows and
columns of F,;(N/4) is derived.

Theorem 3: F,,(N/4) can be transformed by permuting the
rows and columns into

P,(N/4)F,(N/4)Py(N/8) = [A B ]

B A (13)

where P,(N/4) and P,(N/4) are row and column permutation
matrices, respectively. Let a(i, k) and b(i, k) be elements at
the ith and kth column of A and B, respectively, and be
expressed by

a(i, ky=exp (-2=a(i, k)/N) (16a)
b(i, k)y=exp (—j2%B(i, k)/N)
0<i, ks%——l (16b)

where o(i, k) and B(i, k) are odd numbers.
1) a(i, k) and B(i, k) satisfy

. . . N
{a(i+1, k+ D)nz2={al, KNz 0K, k€—8——2 (17a)

. . N . N
(a('+lt 0))N/2= al !, —-=—1 s Oslg——z
8 Nr2 8
(17b)

2
BG+1, k+ Dnp= B, Knz 0<i, k<§—2 (17¢c)

] N 1 0<'<N 2
(ﬂ(‘+l! O))N/2= <ﬂ<’t _8'_ N/Z’ \‘\_8"' .

(17d)
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2) a(i, k) and b(i, k) are related by

a(i, k)= —b*(i, k) (18)
where c* denotes complex conjugate of ¢.

Equation (17) means that the matrices 4 and B have the
same structure as the second stage circular convolution matrix
H_,(N/8), except for the polarity of the matrix elements.

The concrete row and column permutation procedure is
provided in the proof of Theorem 3, and is summarized here.

Step 1: a(0, 0)=g(0, 0). (19)
Step 2: a(l, 0)=exp (—j27a(l, 0)/N) (20a)
(™31, O)nn=1. (20b)
N | . N .
Step 3: a(O, E—z)=exp (—ﬂra(O, E—l)/N)
(21a)
<a<0, E— I>> ={a'(1, 0)nn
8 N2
. N
thsg—l. (21b)
Step 4: a(i, 0)=exp (—j2wa(i, 0)/N) (22a)
) N |
(a(i, 2= (0!<0, '8--1)>
NI2
2si<%’—l. 22b)

The above row and column permutations in A uniquely
determine the permutations in B.
From (4), the matrix given by (15) is divided into

A B [ 1 -1
B A|=| -1 -1
(A+B)/2, 0 1 -1
[ 0, (A-—B)/Z][-l -1]' 23)

Since A and B satisfy the conditions given by (17), (A = B)/2
also satisfies the same condition. The following theorem is
held for the submatrices (4 + B)/2.

Theorem 4: Letting a(i, k), a.(i, k) and a_(i, k) be
elements of A, (A + B)/2 and (A — B)/2 at the ith row and
kth column, respectively, a, (i, k) are given by

a.(i, ky=j Im (a(i, k)
a_(i, k)=Re (a(i, k))

(242)
(24b)

where Im (-) and Re () mean imaginary and real parts of a
complex number.

Theorem 4 indicates that the (4 + B)/2 elements have pure
imaginary and real values. Therefore, (A * B)/2 can be
essentially regarded as real value matrices. This gives reduc-
tions in the number of computations.
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The previous discussions on the matrix reformation are
carried out except for the polarity of the A, B, and (4 + B)/2
elements. A procedure modifying the polarity, by which the
second stage circular convolution matrix A _;(N/8) is finally
obtained, is introduced here. First, a preparatory theorem is
given.

Theorem 5: Let N’ be an integer and satisfy

N’ <N. (25)

Let c(i, k) be an element of an N X N’ matrix C at the ith row
and kth column, and be expressed by

c(i, k)y=exp (—2=v(, k)/N), «(i, k)=o0dd number

(26)
where y(i, k) satisfies
’ N
v aq, 0))~=5+1 (27b)
YU, 0)={y'(1, O)n, 2<iSN’'-1 (27¢)
(0, k)=v(N' -k, 0) (27d)

v, k)={(, OO, Knr 1<i, KSN' =1, (27¢)

Matrix C can be transformed into H_,(N’) by changing the
polarity of elements included in the Oth column.

Next, from Theorem 5, the following theorem concerning
how to change the polarity of the elements of A can be
derived.

Theorem 6: Let Q be a set of integer numbers, whose
element i satisfies

a(i, k)=exp (—j2za(i, k)/N) (28)

ali, 0)={a‘(l, 0))~+¥- 29)
The matrix A can be transformed into H _,(N/8) by changing
the polarity of elements included in the Oth column, ith row,
and (N/8 — i)th column where Jef.

It is easily shown that a manner of changing the sign
provided by Theorem 6 is also valid for B and (4 + B)/2.
Thus, the matrices (4 + B)/2 can be changed into A _(N/8)
having pure imaginary and real value coefficients, respec-
tively.

C. Removing the Assumption of a(0, 0) = g(0, 0)

Circular matrices not satisfying the assumption of a(0, 0) =
£(0, 0) are obtained as follows. First, it is easily proved that
the structure of H_(N) defined by (1) and (2) is always valid
even though moving elements of the Oth column to the (N —
1)th column, and elements of the (i + 1)th column to the ith
column, and changing the sign of elements of the (N — 1)th
column. Through these reformations, an arbitrary element of
A can be assigned to the Oth row and Oth column.
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D. General Radix and Stage

The previous discussions are restricted to the case of
obtaining F,;(N/4) from F(/N) using the radix 2 decimations,
and H_,(N/8) from F;;(N/4). However, the proposed al-
gorithm can be extended to a general case in the same way.
When the submatrices, obtained by performing the radix M
decimations, 2 < M or further decimations on F},(/N/4) are
used to form the circular convolution matrices, the factor A
usually becomes a complex value. Therefore, the complex
number theoretic transforms [27)-[29] must be employed.

IV. IMPLEMENTATION OF THE NEW ALGORITHM
A. General Flowchart

Fig. 2 shows a general flowchart for the new algorithm
using the radix 2 decimations and the second stage circular
convolution matrix. The operations are repeated using the
reduced size matrices having the same structures as Fo(/N) and
F\(N/4).

B. Block Diagrams

Fig. 3 shows block diagrams of the method wherein the
decimations in frequency and in time given by (7) ard (9) are
carried out. FDS and TDS are frequency and time decimation
shuffles. The matrix reformation procedure from Fy;(N/4) to
H_\(N/8) is illustrated in Fig. 4(a). Since the multiplication
of j = V=1 is performed at the output, the elements of
H' (N/8) have real values. The concrete element values of
H&{(N/8) in the case of a 32 point DFT are given at the end
of this section. Furthermore, a general block diagram for
H_ (N/8) implementation through the NTT and the inverse
NTT is shown in Fig. 4(b). Since the H_,(N/8) size is the
power of 2, each stage in the NTT and the inverse NTT can be
realized using the butterfly structure [16], which provides a
regular and simple structure and reductions in the numbers of
additions and data transforms.

C. Number Theoretic Transform
By using the Fermat number as the residue modulo [16],

M=22%41, (30)

the multiplicands, which appear at the thstage 1 < i < b +
1, become the power of 2.! The multiplicands \; at the ith
stage satisfies the recurrence formula

A=Nop 1< (31a)
A= — 1. (31b)

In the ith stage, i < b, \; can be expressed by
N=22"" 1gigh. (32a)

Furthermore, A ., at the (b + 1)th stage has a simple number
(16],

Aoy =272 ). (32b)

The matrix H_,(N/8) is called the second stage circular convalution
matrix. On the other hand, the stages in the NTT and the inverse NTT are
numbered from the first stage.
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Permute rows ond columns
Chonge signs of elements

Fost convolution through
butterfly struciure NTT

Fig. 2. General flowchart for new DFT algorithm.

Fig. 3. Block diagrams showing decimations in frequency (a) and in time
(b). FDS and TDS are frequency and time decimation shuffles, respectively.

VoH0InLINg

sbuoyo ubis
obunyd ubiS

INTT o

Coefficients

®)

(a) Matrix reformation process from F,,(N/4) to H?(N/8). (b)
Fast convolution through NTT and inverse NTT.

Fig. 4.

As a whole, from the first stage to the (b + 1)th stage, the
multiplications of A; can be replaced by circular shifts. When
H_,(N/8) transform length is greater than 2%+, there exist
two approaches to computing the circular convolution, accord-
ing to the residue modulo employed.

Modulo 2" + 1: In this case, it is possible to express
22, 1< <11 by elements in the residue number system.
Therefore, the one-dimensional butterfly structure can be
applied. Multiplicands in the ith stage, b + 2 < i, are fixed
constants which do not depend on the DFT matrix elements.

Modulo 22 + 1: On the contrary, the residue number
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system with modulo 23 + 1 is not a prime number. The
maximum possible transform length for the one-dimensional
butterfly structure becomes 22+2, that is, 25+2 = 128, where
maultipliers have the power of 2. Therefore, in the case of 22+!
< N/8, some modification must be required. In this paper,
the following matrix size reduction methed is adopted [17].

Hy(M)= [,’é ﬁ]
B-A 0

0
=[110] 0 A 0
011 0 0 NB-A

Matrices B — A, A, and A\B — A have the same structure as
H\(M) with the reduced size (M/2) x (M/2). When M/2 is
still larger than 2°+!, the above matrix dividing is further
repeated until the reduced size becomes 2%+, that is, 2°*! =
64.

10
I 1] @33
01 (33)

D. Example for 32 Point DFT

Matrix Reformation: F,(N/4) is cbtained through the
decimations in frequency and in time as follows:

F | (N/4)

~wl o w? ws w’ wd  wll WD IS

wi owd wlS s Wl W wl  wh

ws o owls  —wd Wl owP —w? oWl i

wl —wS wd —wl —wls w3yl oy

=] WO —wll Wi o _wlS !l w3 S W

wil Wl —w? Wil w3 _y® WS oy

wh W’ wl  —wll —wS wis  wd
| wis  wi3 il o w? wS wl  wl
(342)

where
w=exp (—j27/N), N=32. (34b)
Step 1: The element a(0, 0) is fixed as

a0, 0)=g(0, O)=exp (—j2w/N). (3s)

Step 2: The element a(l, 0) is determined so as to satisfy
a(l, 0)=exp (—j27a(l, 0)/N) (36a)

where
(@™8(1, O))nr=1. (36b)

The element g (1, 0) of F;(N/4) with g(1, 0) = 3 is used for
a(l, 0).

Step 3: The elements a(0, N/8 — i),2 < i< N/8 — 1are
determined using a(l, 0) as

a(0, N/8 —iy=exp (—j2zxa(0, N/8—1i)/N) (37a)

where
(37b)

(37¢)

((0, N/8=i)np={a'(l, Onr
a(l, 0)=3.
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- They become
(a0, Dn2=(3%6=11 (382)
(@0, 2)n2=(3%16=9 (38b)
(@0, 3w2=3"16=3. (38¢)
a(i, 0)=exp (—j2=a(i, 0)/N) (3%9a)
(e, )= <a( 0, %’- i) >m . (39b)

After the row and column permutations, Fy;(/N/4) can be
changed into

P\(N/4)F,,(N/4)P,(N/4)

~wl oWl w? Wl wis W w? wh-
wl ow! —wl W w3 WS WS W
w? wd  —wl —wi w! w3 s WS
wil —w? w3 whoo WS —wl Wi s
w5 WS oWl w3 Cowl owll WS w3
wB wis WS W wl o owl —wlil o
w?  wld —wlS s w? w? —wl —wi
Lws —w' wid wis wit —wd Wl w!
=4 B (40)
LB 4

where P,(N/4) and P,(N/4) are row and column permutation
matrices. Equation (40) shows that the reformed Fi;(N/4)
satisfies the conditions given by (16)-(18).

Step 5: In the matrix A, (1, 0) satisfies

(@21, 0)n=9 41a)

(@31, 0)N=27=11 +§ . (41b)

From Theorem 6, A can be transformed into A _,(N/8) by
changing the sign of the elements in the Oth column, the third
row, and the first column as follows:

—wl oWl w9 W3
—wd —wl —wll
A=QAQ)= | |9 _3 _w! it |- (422
wil —wd —w? —wt
At the same time, B is automatically reformed as
C_w!S —wS  w? Wl ]
—wl3 s —ws W
B=0iBQ;=| ", “ 5 Z s _ys |- 42)
L WS —w? —wi — i
Sign change matrices Q; and Q, are given by
[ 1
I 0
Q= (43a)
0 1
R -1
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-1 0
-1
QZ = 0 1 (43b)
1
Furthermore, (4 + B)/2 becomes
A—;f: iH" (N/8)
-S(1) -8G5) SO &)
L =SG) -51) -S06) s |, SG)
=/ l-sm -53) -S) -S©) !
S -8 -S3) -8
=sin 27i/N) (44a)
é;—B= H? (N/8)

-C) ceo -c c@3)
|- -c@) cE)y -C¢O ci)
= crmn -c@ -cqy co |

-C() CM -Cc@) -CcQ)

=cos (2xi/N). (44b)

Thus, the matrices (4 + B)/2 become the second stage
circular convolution matrices having pure imaginary and real
value elements, respectively.

Block Diagrams: Fig. 5(a) shows a whole block diagram
for a 32 point DFT. The matrices F\,(N/4) and F;,(N/8) are
transformed into H*{(N/8) and H2{(N/16), respectively.
The Fy;(N/4) implementation is shown in Fig. 5(b). The other
matrices in the block diagram are further divided into small
size matrices.

V. CoMPUTATIONAL COMPLEXITY

Numbers of computations, such as additions, multiplica-
tions, and circular shifts, required in the proposed algorithm
are obtained following the general flowchart shown in Fig. 2.
Input sequence values are assumed to be complex. The case of
a real value sequence is briefly stated later. The numbers of
computations are evaluated based on real computations.

A. Addition

Additions are required in both processes of getting H_ (N/
2i+3) from Fo(N/2%) and F,o(N/2+2), and of implementing
H_(N/2'+3) through NTT and INTT.

Letting the DFT matrix size N be 2£, the following numbers
of additions are required in the matrix reformation process.

Fo(N/20)—~H_(N/2*3) : 4 - 2L~ 0<gigL-1

Fio(N/2)—H_(N/2"*1) : (i~ 1)4 - 2171, 2<igL-1.
(45)

Since the same operations are repeated on the reduced size
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F
0
s )
Fyy (N74)
L
(a)
° =) i - o
' -t \ . i 1 .
H (N/8)] ;
2 ] 4\ -1 J \ 2
30— — . 2L |3
4 o] =m 1]  ea
-4
2 ] ) K5 (e : _’:
: 1/ 2 ¢
Py Q2 Q A
®)
Fig. 5. (a) Block diagram for new DFT algorithm (32 point DFT). (b)

Fy(N/4) implementation through fast convolution.

matrices, the total number of additions becomes

W L-1 L= .
Oa'=Y% 4271+ Y 4(i—1)2L- (46)

i=0 i=2

The number of additions needed in the fast convolution of
H_(N/2), L — i < b + 1is given by

4 - 2L-{(L-1).

Since the number of A _(N/2) is 2(/ — 2), additions required
in computing all circular convolutions become

“4n

L-1
02’:2 8(i-2(L-i)2Lt-%, L-3<b+1. (48)

i=3

When b + 1 < L — 3, there exist two approaches, depending
on the modulo, as mentioned previously. In the case of modulo
2% 4 1, additions are further required only in the v2
multiplication. Thus, O’ given by (48) is modified as

L-1
Modulo 2%+1: 0% =) 8(i—2)(L - )2+~

i=l
L-b-
+ 2

i=3

1

4i-2)2L-i.  (49)

On the other hand, when modulo 232 + 1 is employed,
H_(N/2), b + 2 € L — i must be broken down into
H_,(2%*Y), following (33). This matrix breaking down
process requires the following additions:

5. 9 L-5-1-i 3\ &k
2§ (3)"

k=1

(50
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Since the number of H_,(2%*") obtained from H_,(N/2) is
3L-4-1-i  additions required in computing H_;(N/2°) be-

come
L-b-1-i
4<b+3>2L-"<3) .
2 2

The above equation includes the additions required in the V2
multiplication. Taking the repetition into account, the number
of additions, which are required in the fast convolution
processes with modulo 232 + 1, becomes

Modulo 232+1 : 0%

(62)

=S 8- -it

imiy

L-b-lz. ofals 3 piei 3\L-b-1-i
g o))

g (2]

iy=max {3, L—b}.

(52a)

(52b)

The total number of additions which are required in the
proposed DFT algorithm is given as a sum of 0% and 09.

0,=09+02 (53)

B. Muiltiplication

Multiplications are classified into two categories, depending
on the multiplicands. They include linear numbers consisting
of the DFT matrix elements and fixed constants which do not
depend on the input data.

Linear Multiplication: The linear multiplications are
needed at the diagonal matrices in the fast convolution
processes. In the case of L — 3 < b + 1, the number of them
is given by

L
Owe=Y, 4(i-2)2t-, L-3<h+1. (54)

i=3

When b + 1 < L — 3, two approaches, depending on the
modulo, must be considered. The fast convolution with
modulo 2'6 + 1 does not require additional linear multiplica-
tions. On the other hand, when modulo 23 + 1 is employed,
since H_,(N/2), b + 1 < L — i must be broken down into
3L-b-1-1 matrices with 20+! x 2b+! size, as mentioned
previously, O;,s given by (54) is modified as

L
Modulo 232+1 : OLM=2 4(i—2)2L-i
i=i

L-b-2 I\L-b-1-i
+ Y 4(1'—2)2’*"(5) (55a)
=3

i=max {3, L-b—-1}. (55b)
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Fixed Constant Multiplication: At the ith stage, b + 1 <
i of NTT and INTT with modulo 26 + 1, \; becomes a fixed
constant. Therefore, the number of the fixed constant multipli-
cations is given by

L-b-2
Modulo 2%+ 1 : Opy= 2 A0 -22L-(L—-b-1-i).

i=3
(56)

C. Circular Shift

The number of the circular shifts required in the fast
convolutions also depends on the modulo, and can be counted
in the same way as those of additions and multiplications. The
results are provided here.

L-1

Modulo 216+1 : OS=E 40— 2)(L —H2L-i
L—b-

+ X
i=1

h=max {3, L-b}.

1

4(i—2)(b+2)2L-i (57a)
(57b)

L~
Modulo 2%2+1: Og= Y 4(i—2)(L -2t~

i=i,

S ai-neezei( )7 (o
+ Y H-20b+2) (5) . (58)

i=3

D. Real Input Sequence

As the block diagram in Fig. 4 shows, the multiplications of
J(=V=1) are performed after the fast convolutions. There-
fore, if the input sequence values are real, the numbers of
computations required before the multiplications of j are
simply reduced to halves of those required for the complex
input sequence. After the multiplication of j, the numbers of
computations are the same as those for the complex input
sequence.

E. Computational Complexity Comparison

First, numerical examples for 02’, off’, Orr, Oy, and Og
are given in Table I. Furthermore, the numbers of computa-
tions required in the radix 2 FFT algorithm, Winograd’s
algorithm, and the proposed algorithm are listed in Table II.
Numerical data in these tables show the numbers of real
computations for the DFT of a complex value input sequence.
The numbers of additions and multiplications required in the
FFT algorithm are given by

3
Oarrr=2NL +5 NL-2) (59)

3
Oy rer= 3 N(L-2) (60)

where complex multiplication is carried out using three real

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-33, NO. 4, GCTOBER 1985

TABLE 1
NUMERICAL EXAMPLES FOR NUMBERS OF REAL COMPUTATIONS
REQUIRED IN EACH PROCESS OF PROPOSED DFT ALGORITHM FOR
COMPLEX INPUT SEQUENCE

DFT o o Oues Orm o
Size A 16 | 2% [ e 32 16 16 32
32| 336 96 %6 44 a4 0 48 48
ea| 7i2| 368 3e8| 104| 104 ol 18a| 184
128 1472 1152 (152| 228| 228 ol s57e| s76
2s6| 3000| 3344| 3216| 4Bo| 480 o| 1736| 1808
512| e064| 8864| sco8| o88| 988| 256 4432| 4432
1024 | 12200 | 22064 [24752 | 2008| 2264 1536|10200| 12632
204824480 52672 |74688| 4052 | s844| s5888|22112|36960

Modulo : 2'6+1(7), 232+ (k&)

TABLE I
NUMBER OF REAL COMPUTATIONS REQUIRED IN (a) FFT ALGORITHM,
WINOGRAD's ALGORITHM IN [12], PROPOSED ALGORITHM, (b) AND
WFTA IN [13] FOR COMPLEX INPUT SEQUENCE

DFT [Radix 2 FFT [Ref(12) | NewDFT(Modulo:2® I)|New DF T {Modulo: 22 1) |
Size | mMun™| add [L.Muit®] Muit | Add [Shitr | Muit | Add | Shift
32| 144] 304 36| 44| 432] 48 44| 432 48
64| 384| 1152 89 104 1080 184 104 1080 184
1281 960| 2752} 204] 228| 2624| 576 228| 2624] 576
256 | 2304| 6400] 445| 480| 6344| 1736 480] 6216} 1608
512| 5376/14592] 940] 1244|14928] 9432| 988lias72] 4432
1024 12288[32768| 1945 3544{34264{10200| 2264|36952]12632
2048 [27648[72704] 3972| 9940|77152(22112| 584499168 36960

wLinear Multiplication, uxLinear and Fixed Multiplications.

(a)

DFT Size | Mult Add

30 72 384

60 144 888
120 288 | 2076
280 864 7148
520 | 1926 |11352
1008 | 3564 | 34668
2520 | 9504 | 99628

(b)

multiplications and three real additions [6]. Multiplications are
classified into the two categories including linear and fixed
constant muitiplications. The minimum number of linear
multiplications needed to compute the power of 2 size DFT is
also contained in Table II {12].

In the proposed algorithm, one approach with modulo 232
+ 1 can provide the smaller numbers of multiplications,
which include both the linear and fixed constant multiplica-
tions, than that by the other method with modulo 2'6 + 1
throughout all DFT sizes. For large size DFT’s, however, the
modulo 26 + 1 approach requires fewer numbers of additions
and circular shifts than those obtained by employing modulo
2% + 1. In any case, the proposed algorithm efficiency seems
to be somewhat bounded by the DFT size, which is up to about
21 = 2048,

Making a comparison between the FFT and the proposed
algorithms, it can be read from Table II that a major number of
linear multiplications in the FFT algorithm are replaced by the
power of 2 multiplications. The 2" multiplication can be easily
implemented on digital machines as circular shift. The number
of multiplications is reduced into about 21 percent. The
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number of additions is almost the same, except for a 2048
point DFT. The simple butterfly structure used in the FFT is
also preserved.

When computational complexity is estimated by the linear
multiplication only, Winograd’s algorithm is slightly superior
to the proposed algorithm. In both software and hardware
implementations, however, multiplication is actually required
for the fixed constant multiplicands. In these cases, the
proposed algorithm becomes more efficient.

Consequently, it can be concluded that the proposed new
algorithm can reduce the multiplicative complexity to the same
level as that attained by using Winograd’s approach, while
preserving the same number of additions and the butterfly
structure as in the classical FFT algorithm. ‘

Actual implementations on a general purpose computer and
a microprocessor system are now under investigation. Results
will be reported in another paper.

IV. ConcLusioN

A new algorithm for computing the DFT of the power of 2
length time sequence has been proposed in this paper. The
DFT coefficient matrix is broken down into the power of 2
size circular matrices. The butterfly structure NTT is applied
to implementing the circular convolutions. Compared with the
radix 2 FFT, the number of multiplications, which does not
include the circular shifts, can be reduced to about 21 percent,
and the number of additions and the butterfly structure are
preserved. When efficiency is estimated by the multiplicative
complexity, which includes only the linear muitiplications, the
proposed algorithm is slightly inferior to Winograd's al-
gorithm. If fixed constant multiplications are further taken into
account, however, the new algorithm becomes more efficient.

APPENDIX 1
ProoF oF THEOREM 1

Since

, N
Qi+ D2k+1)=2n+1+m, 3+m2N

N
OSngz—l, m;, m;=integer (A1)

(U, k))ns2 becomes
(@, ©nn={Qi+1)2k+ Y)np=2n+1, 0<n<§— L

(A2)

The number of all possible values given by (A2) is N/4.
Therefore, in order to prove (13b) and (13c), it is sufficient to
show that g(i, k) for elements included in the same row and
column are different. Let £’ be an integer defined by

N
k' =k+Ak, 0<A1€SZ—1. (A3)

Since
Qi+ D2k’ +1)=Qi+ 1)k + 1)+ 2Ak(2i+ 1),

. N
0<i, k<7-1, (A4)
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the following equation holds:

&l k' Wnn=(gl, K)nns (AS)
if, and only if, Ak satisfies
2AkQ2i+1)=mN+d ]—ZY, m : integer,

6=0or 1. (A6)

The following combinations of 7 and é exist:
m#0, §=1 (A7a)
m#0, §=0 (A7b)
m=0, §=1. (ATc)

Under the conditions given by (A7a), A7b), and (A7c), Ak is
required to be at least N/4, N/2, and N/4, respectively, in
order to satisfy (A6). From (A3), however, the maximum
value of Ak is N/4 — 1 and the above requirement is not
satisfied. This means (A6) and, at the same time (AS), do not

hold. The same discussion is valid for the row. Q.E.D.
APPENDIX 2
Proor oF THEOREM 2
N is assumed to satisfy
16K N. (A8)

It is easily proved that Theorem 2 holds for N = 16. Now, let
the following equation hold for any N satisfying (A8):

N

Z N N
((2n+1)8)~=—2—+1, 0<ns5—1. (A9)
Using the residue modulo of 2N, (A9) is rewritten as
2 N
({2n+ 1)8)2N=mN+5+ 1, m:integer. (A10)

Furthermore, both sides of (A10) are squared:

w N 2
{@n+1)8)n= <(mN+—+1> > =N+1. (Al])
2 2N

This equation shows that Theorem 2 holds for the residue
modulo of 2N. Thus, following the above recurrence formula,
starting from residue medulo 16, Theorem 2 can be pro-
ved. Q.E.D.

APPENDIX 3

ProoF oF THECREM 3

First, row and column permutations are derived by which
elements at the Oth row and Oth column of A4 satisfy (15) and
(17). Since a(0, 0) is fixed to g(0, 0) where g(0, 0) = 1, and
from (15), it is necessary that 8(0, 0) satisfies

8%, 9))~= . (A12)
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From Theorem 1, {8(0, 0)) is generally expressed by 27 + 1
+ 8N/2. Substitute 2n + 1 + 8N/2 into (A12):

N\:2 N
((2n+1+6 E) > =(4n2+4n+1)1v, 0<n$—4——1
N

(A13)
Therefore, # is required to satisfy
4n(n+1)=mN, m : integer, (A1)
Taking the range of n
N
ogn sz— 1 (A15)
into account, 8(0, 0) is obtained as
N
B(0, 0)=E-.l. (Al6)

Thus, (0, 0) satisfying (A12) existsamong 22 + 1,0 < n <
(N72) — 1.

From (17) for the Oth and first rows, the following
recurrence formulas must be satisfied.

(0o ) 1),

. N
lslsf_ 1 (Al17)

et 0= ({0 §-1)

Therefore, a(N/8 — i, 0) is expressed using (1, 0) as

(A18)

N
<a(0. ——i)> ={a‘(1, O)ns- (A19)
8 N2
At the same time, o (1, 0) is required to satisfy
N
(as(l, O)np=1. (A20)

Since, from Theorem 2, a number satisfying (A20) always
exists among 2n + 1, 0 € n < N/2 — 1, this number is
assigned to a(1, 0). Furthermore, from (17), {a(i, 0))ny2 is
required to be equal to {a(0, N/8 — i))n.: then

(e, n=1((1, O)ns. (A21)

Since (1, 0)is 2n + 1, (0, N/8 — i) satisfying (A19) also
becomes a number among 27 + 1,0 € 7 € N/2 — 1.
Furthermore, since

{a(l, O))nn#1,

(0, N/8 — i) and «(0, N/8 — i’), i # i’ are different from
each other. Thus, a(0, N/8 — i) and a(i, 0) satisfying (A19)
and (A21) can be chosen from g(0, k) and g(i, 0), respectively.

(A22)
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Next, after the elements of the Oth row and Oth column are
determined so as to satisfy (A19) and (A21), it can be proved
that (17) holds for elements included in arbitrary rows and
columns of A, as follows.

An element a(i, k), i # 0and & # 0 can be expressed using
a(i, 0) and (0, k) as

N
a(i, K)=exp (—j2wa(i, 0)a(0, k)/N), 1<i, ksg- 1.

(A23)
From (A19) and (A21),

N -
(oliy 0)0, Khwre=(es ™ (L, Owar.  (A24)
Then
{ai+1, 0)x(0, k+1)n2={ali, (0, K)ny2.
This proves (17a). In a similar way.

(A25)

<oz(i, 0)0:(0, ]X— 1)> ={@*1(1, )2 (A26)
8 N2

is obtained, and (17b) is proved.

From the row and column permutations in A, the permuta-
tions for B are uniquely determined as follows. Elements in
the Oth column are expressed by

b(i, O)=exp (—j2wa(i, 0)B(0, 0)/N) (A27)

where 8(0, 0) is N/2 — 1, as given by (A16). The following
condition for (1, 0) is obtained.

(ﬁg(l. 2= <(a(l, 0)(;- 1))%’}”/2

N
=(@&(l, On2=1 (A28)
where

16<N.

The other elements in the Oth column are expressed by
B(l’ 0) = (O!(l, O)B(O’ 0»N= <a(ls 0)(7_ 1)> N s

. N
lslsg— 1. (A298)

Since (i, 0) = 2n + 1,1 € n € N/2 - 1, 8(, 0) becomes

N
B3, )= <——a(i, 0)> .
2 N

Furthermore, elements in the Oth row are expressed by

(A29b)

B, k)=((0, k)B(O, O)x,

(e o3-0),

N
1 sksg— 1 (A30e)

(A30b)
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N
= <§—a(0, k)>~ .

Elements in arbitrary rows and columns can be obtained using
the above expressions for the Oth row and Oth column
elements, as follows:

b(i, k)y=exp (~j27B(i, 0)a(0, k)/N)

(A30c)

(A3la)
. . N
=exp (—j2za(i, 0)B(0, k)/N), 1<i, ks;— 1.

(A31b)
From (A30c),

b(i, k)=exp (— j21r(1;— a(i, 0)x(0, k) ) / N) .

(A32)
Therefore, b(i, k) can be rewritten as
b(i, k)= —exp (2xa(i, 0)a(0, k)/N). (A33)
From (A23), b(i, k) is related to a(i, k) as
b(i, k)= —a*(i, k). (A34)

Equation (18) is proved by (A34). Furthermore, (17c) and
(17d) can be proved taking into account the relation between
b(i, k) and a(i, k), and the a(i, k) property given by (17a) and
(17b). Q.E.D.

APPENDIX 4
Proor oF THEOREM 4
From Theorem 3, a(i, k) and b(i, k) are related by
b(@i, k)= —a*(i, k).
From this relation, a.(i, k) are easily obtained as
a.(i, k)y=(a(i, k)—a*(i, k))/2=j Im (a(i, k)) (A3Sa)

(18)

a_(i, k)=(a(i, k)+a*i, k))/2=Re (a(i, k)). (A3Sb)
Q.E.D.
APPENDIX 5
ProoF oF THEOREM §
First, under the condition
i>k, (A36)
v(i, k) is expressed by
vG, =1, OV -1, O)y  (A37a)
=@V k1, O (A37b)

From (27b) and a (i, k) value, which is an odd number,

N
vG, B)={y""*(1, 0)>~+5 (A38a)
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=vy(i—k, 0) +¥ . (A38b)
Then
c(i, k)= —-c(i-k, 0). (A39)
Next, in the case of
i<k, (A40)
the expressions (A38) and (A39) are modified as
v, =GN HKL, O)v=v(0, k-i)  (A4D)
and
c(i, k)=c(0, k-i). (A42)
Furthermore, the following relation is also obtained
i, N'=D)=((1, O™ -N'+1(1, )y
=1, Ow=7(@+1, 0). (A43)
This means
ci, N'=1)=c(i+1, 0). (AY4)

Equations (A39), (A42), and (A44) show that the structure of
C is the same as that of H_,(N’), except for the signs of the
Oth column elements. Therefore, the matrix C can be changed
into the second stage convolution matrix H_(N’) by revers-
ing the signs of the Oth column elements. Q.E.D.

APPENDIX 6

Proor oF THEGREM 6

When i is an element of the integer set 0, a factor a(i, k) for
a(i, k) can be expressed by

a(i, k)=(a(i’ O)a(O, k»N

= (ai(l, 0)(0, k))~+§ . (A45)
If a(0, k) satisfies
N N,
0, k)=a(§-k, 0)=(as 5L, Oy, (A46)
then
N +i-k N
afi, k)= (a8 a, 0))~+5 . (A47)

On the other hand, if the number 8/N — £ is included in the
set Q,

N
o0, ky=(as (1, o»~+§' ,

(A48)
then

N
ali, k)=(as "' (1, O (A49)
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Comparing expressions (27), (A47), and (A49), it can be
shown that the matrix A4 structure is the same as that obtained
by changing the signs of the ith row and the (N/8 — i)th
column elements of C where i is included in the integer set ©.
Therefore, taking into account the sign change rule for C
given by Theorem 5, A can be transformed into a matrix
having the same structure of H_,(/N/8) through changing the
signs of the Oth column, ith row, and (N/8 — i)th column
elements. Q.E.D.
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