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Abstract—A transfer function is constructed in a cascade form, using
a low-order error free function and a high-order fuaction. The high-
order function is discretely optimized so that its error spectrum is sup-
pressed by the error-free function. In order to save computing time,
the error spectrum is equivalently evaluated in a time domain, and the
coefficients are divided into small groups in a discrete optimization-
procedure.
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]. INTRODUCTION

As digital filters have been increasingly applied to various fields,
their circuit complexity reduction becomes an important design
problem [1]. Among many design aspects for the above problem,
this correspondence particularly concerns how to optimize finite
wordlength coefficients, using a transfer function approximated
with infinite precision as the initial condition. Another approach,
for instance, how to find an optimum tradeoff between coefficient
wordlengths and a filter order, is not discussed.

Several useful approaches to infinite impulse response (IIR) fil-
ters and low-order finite impulse response (FIR) filters have been
reported [2]-[6]. On the other hand, for high-order FIR filters,
mixed-integer programming techniques [7]-[9], and a local search
method [10) have been mainly applied. These approaches, how-
ever, still require a large amount of computing time.

This correspondence proposes a new discrete optimization
method directed toward saving computing time for high-order FIR
filters [11].

II. DiScRETE OPTIMIZATION BY ERROR SPECTRUM SHAPING
A. Algorithm
A transfer function H(z) basically has a cascade form structure.

H(z) = W(z) F(z), z=e"T (1)

where T is a sampling period and is assumed to be unity. W(z) and
F(z) are a low-order function with prerounded off coefficients and
a high-order function to be discretely optimized, respectively.

Let A F(z) be an error function for F(z), caused by quantizing
the coefficients, and let it be expressed by

AF(z) = F(2) — Fp(2) (2)

where Fp(z) represents a function with rounded off coefficients.
From (1), quantization error for H(z) is expressed by

AH(z) = W(z) AF(2). (3)

In the proposed method, the mean square of |[AH(e’)| is em-
ployed as an ervor criterion,

1

=5 S |aH(e™)| do (4a)

1 (7 . 2
= — S |W(e) AF(e™)] dw. (4b)
27 J-x
Minimizing E is equal to shaping | AF(e’*)| to be suppressed by
W(z). Therefore, the W(z) amplitude response is required to be
small in the stopband.

B. Transfer Function Approximation

The transfer function H(z) is first approximated through con-
ventional methods. One approach by the Remez-exchange method
[12] is described here.

Letting D(w) and U(w) be a desired amplitude response and a
weighting function for error evaluation, respectively, an approxi-
mation process is stated as

Uwy) [D(wd) = |H(eE)|] = (-D)'s, k=0,1,---,r (5)

where {w;} is a set of extremal frequencies. From (1), (5) can be
rewritten as

|W(e)| Uws) [| W' ()| D) - |Fle™)]] = (-1)'s.
(6)

Since W(z) is fixed, F(z) can be approximated using | W(e’*)|
U(w)and | W™ '(e/")| D(w) as a modified weighting function and
a desired amplitude response, respectively. The number of the ex-
tremal frequencies is equal to the degrees of freedom in F(2).
Therefore, the result obtained by solving (6) becomes a near-opti-
mum solution, compared to the direct approximation of H(z). For
this reason, a low-order function is desired for W(z).
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III. DiScrRETE OPTIMIZATION PROCEDURE
A. Error Evaluation

Although the error criterion was given by (4), in an actual op-
timization procedure, E is transformed into a time domain, in order
to save computing time. Letting Ak, be an impulse response for
AH(z), E is rewritten as

N-1

E= 2 AR

n=0

(7)

through Parseval’s relation [1]. By letting A f, and w, be impulse
responses for AF(z) and W(z), respectively, Ah, is expressed by

Ah, = 2 WA fo_m
m=n)
ny = max {O,n — N+ 1}, n, = min {n, M — 1}

(8)

where Ng and M are orders of F(z) and W(z), respectively. From
(7) and (8), E is further rewritten as

E= Ni:l ( "Zz w,,,Af,,-,,,)z.

n=0 \m=m

(9)

B. Discrete Optimization Procedure

An optimum solution for a set of A f;, which minimize E given
by (9), is discretely searched for. In this procedure, the number of
A f, combinations is extremely large. Therefore, a set of A f, is
divided into small groups. This means E is successively evaluated
using the partial sums of AhZ, as follows:

[N/K~K’']
E= X E, K'<K (10a)
k=1
K-
Ek = IE() Ahi(,(_x')_,'. (10‘3)

The partial sum E; is individually minimized. Adjoining partial
sums E; and E, ., contain common Ak, k(K-K')-K' +1 =
i < k(K — K'). In other words, they contain (K’ + M) common
coefficients A f;. Therefore, by optimizing a parnt of the common
coefficients for both E; and E; ., a near-optimum solution can be
obtained, even though E is separately evaluated.

Search Method: Local and heuristic search methods cannot
avoid the risk of falling into a local solution. Since the proposed
approach drastically saves the number of assignments, a global
search method can be employed.

Search Region: Since the number of A f, combinations is ex-
ponentially proportional to the number of grids, on which Af; is
discretely searched for, a moderate search region must be chosen.

C. Modified Weighting Function

Since A f, is searched for in a restricted reion, error spectrum
shaping is not complete. In other words, an amplitude response for
AF(z) is not exactly proportional to that for 1 /W(z). Therefore,
if a mini-max criterion is employed, a weighting function used in
the discrete optimization procedure should be modified from that
for the transfer function.

D. Number of Computations

Letting the number of A f, 1o be used for E; minimization be L,
all possible combinations of A f, become PL, where P is the num-
ber of grids. Furthermore, the number of E; is [Ns/(K - K')]".
Hence, the total number of assignments becomes

N(E) = PH[N¢/(K - K")]. (11)

The numbers of real multiplications and additions required in E;
calculations are both (M + 2)K. Their total numbers are given by

'Letting R be a real number, [R] is an integer not exceeding R.
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Fig. 1. Frequency response improvements for a 199th-order FIR low-pass
filter. Responses for H(z) with infinite precision coefficients are shown
by dashed and dotted lines.

Nau(E) = Naga(E) = PE[Ne/(K = K")] (M + 2)K. (12)

This number is extremely smaller than that required in direct cal-
culation of E and frequency domain evaluation.

IV. DESIGN EXAMPLES
A. Filter Responses

The proposed approach was examined by using a 199th-order
FIR low-pass filter having 0.17 dB ( p — p) ripple in the passband
0-0.125 Hz, and 72.5 dB attenuation in the stopband 0.14-0.5 Hz.
Sampling frequency used is 1 Hz. The error-free function is the
following 4th-order function.

W)= +2" +27)0 +z7' +27%). (13)

H(z) is first approximated through the Remez-exchange algorithm
[12]. Differences between approximated filter responses with trans-
fer functions H(z) and W(z) F(z) are very small and are mostly
negligible. Furthermore, max { f, } is increased from max { h,} by
about 1S percent. This is equivalent to improving coefficient
wordlengths by 0.2 bit, which is also small.

B. Design Parameters

The filter response error is evaluated by the maximum deviation
for an amplitude response. In order to shape | AF(e’")| so that it
is approximately proportional to |1/W(e/*)|, the modified
weighting function is chosen to be

WH(z) = (1 + 27" + 7). (14)
The F(z) coefficients are rounded off into 8, 10, 12, and 14 bits,
which do not include a sign bit. The maximum coefficient value is
normalized to unity. The number of grids assigned to A f, is three
or seven.

C. Filter Response Improvements

Maximum passband ripple (p — p) App and minimum stopband
attenuation As are shown in Fig. 1. Lines indicated by ®, A, O
correspond to Hy(z), W(2)Fp(z), and W(2)Fgo(2), respec-
tively. Hy(z) and Fy(z) have only rounded off coefficients. Fgo(2)
has the discretely optimized coefficients. Solid and dashed lines
correspond to the number of grids for three and seven, respec-
tively. Fig. 1 shows the proposed algorithm sufficiently improves
filter responses both in the passband and stopband. These improve-
ments can be rephrased as coefficient wordlengths are reduced by
about three bits.
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D. Computing Time

The execution time required in the discrete optimization proce-
dure with seven grids was 97 s, using a general purpose computer
(NEC ACOS 900). This result obviously allows using the proposed
method for high-order FIR filters.

V. CONCLUSION

A computationally efficient discrete optimization algorithm for
high-order FIR filters has been proposed. Through a design ex-
ample for a 199th-order FIR filter, coefficient wordlength reduction
of three bits is obtained with a relatively short computing time.
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