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SUMMARY  Over the years, many improvements and refine-
ments to the backpropagation learning algorithm have been re-
ported. In this paper, a new adaptive penalty-based learning ex-
tension for the backpropagation learning algorithm and its vari-
ants is proposed. The new method initially puts pressure on
artificial neural networks in order to get all outputs for all train-
ing patterns into the correct half of the output range, instead of
mainly focusing on minimizing the difference between the target
and actual output values. The upper bound of the penalty val-
ues is also controlled. The technique is easy to implement and
computationally inexpensive. In this study, the new approach is
applied to the backpropagation learning algorithm as well as the
RPROP learning algorithm. The superiority of the new proposed
method is demonstrated though many simulations. By applying
the extension, the percentage of successful runs can be greatly in-
creased and the average number of epochs to convergence can be
well reduced on various problem instances. The behavior of the
penalty values during training is also analyzed and their active
role within the learning process is confirmed.

key words: backpropagation, learning algorithm, convergence,
error function, neural networks, generalization

1. Introduction

Since the introduction of the backpropagation (BP) [1]
learning algorithm, it has proved to be efficient in many
applications. Presently, this gradient descent method
has emerged as one of the most well-known and pop-
ular learning algorithms for artificial neural networks
(ANNs). However, in various cases its convergence
speed often tends to be very slow and it often yields
suboptimal solutions.

As a result, much research has been focusing on im-
proving the BP learning algorithm and numerous new
algorithms and techniques have been proposed. Many
attempts to speed up training and to reduce conver-
gence to local minima have been made in the context
of dynamically adjusting the learning rate during train-
ing, including learning algorithms such as SAB [2] and
SuperSAB [3], Quickprop [4], and RPROP [5], [6].

Other directions that have been studied, include
the application of alternative cost functions. Squared-
error functions have been replaced by possible better
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cost functions, such as the cross-entropy measure [7].
Furthermore, error functions have been extended with
extra terms to direct the search in the weight space to-
wards specific goals, such as the addition of noise as in
simulated annealing [8], [9] or the application of penal-
ties as in weight decay [10], [9].

In this paper, a new adaptive penalty-based exten-
sion for various objective functions is proposed. Penal-
ties are applied in order to put pressure on incorrect
binary outputs to get them initially into the correct
half of the output range. The penalties are dynami-
cally adjusted during training to reflect the difficulty of
this task. Here, the new method is applied to standard
backpropagation as well as to the effective RPROP
learning algorithm. Simulations have been performed
on a number of problem instances and the performance
of the extended algorithms is compared to their original
counterparts.

2. New Adaptive Penalty-Based Learning Ex-
tension

2.1 TIdea behind New Approach

Consider learning of artificial neural networks with bi-
nary target values 1. Of course, the targets also can
be 1 and 0, or values from any other binary defined set.
The learning process can be divided into two phases.
In the first phase, an ANN is trained so as to move all
its outputs for all training patterns to the correct side,
that is greater than or less than a certain threshold,
which equals zero in this case. In the second phase,
the ANN is trained so as to move its outputs located
in the correct region towards the actual targets, that
is +1 or —1. Compared to the second phase, it can
be expected that the first phase is relatively complex
and time-consuming, because for each single output
this process easily affects many other outputs. Fur-
thermore, these two phases are likely to coexist among
the different outputs during training, meaning that the
it" output has already been located into the correct half
of the output range, while the j** output still resides
on the wrong side. Therefore, the difficulty of learning
differs for each output.

We propose an adaptive penalty-based learning ex-
tension. In this method, learning for the outputs lo-
cated on the wrong side, will be accelerated by apply-
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ing penalties. In order to make this acceleration more
effective, the penalties are increased epoch by epoch,
while the outputs reside in the incorrect half of the out-
put range. Furthermore, in order to make the learning
process more stable, penalties are gradually decreased
after the outputs have been moved to the correct side.

Figures 1 and 2 show two example situations. A
circle is a target output and a square is an actual output
of an ANN. The value p; represents the input pattern
number. In Fig. 1, all network outputs are located on
the correct side. On the other hand, in Fig. 2, the
output for the input pattern p4 resides in the incorrect
half of the output range. Moving this output towards
the correct, lower side, will be affected by the outputs
for the input patterns ps and ps, which are being moved
towards +1. Therefore, it can be expected that it will
take a long time to convergence, if ever reached.

In the new proposed method, the correction term
for the output of ps is amplified by applying an adap-
tive penalty. The amplification, that is the penalty, is
adaptive in the sense that it is being increased every
epoch, while the output resides on the wrong, in this
case upper, side. As a result, more and more pressure
is being put on the ANN in order to move the incorrect
output to the right side. After the output enters into
the correct lower half of the output range, the penalty
is decreased. However, in order to avoid the danger
that the output ‘makes a big jump back’ to the incor-
rect side, the penalty is gradually decreased epoch by
epoch. This way of controlling the penalties can make
the learning process more stable.
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2.2 Formal Description

In the backpropagation learning algorithm, the errors
of output neurons are backpropagated through the net-
work during training. The error signal e;,(n) of an
output neuron i at an epoch n for a training pattern
p, can be defined by taking the difference between the
target output ¢; ,(n) and the actual output o; ,(n):

€ip(n) = tip(n) — 0ip(n) (1)

In the new proposed method, for every output neu-
ron ¢ and every training pattern p, a penalty z; p(n) is
created. The error backpropagated in the new algo-
rithm is given by the following equation:

new

ip (0) = zip(n)eip(n) (2)

whereby the penalties are being updated after each
epoch as defined below:

e

zip(n+1)
maz(z;p(n)z~,1) if 0; p(n) is at
_ the same side 3)
- as tip(n)
min(zip(n)zT,2Mm%)  otherwise

and 2~ < 1, 27 > 1 and 2™%® > 1. The initial penal-
ties z; ,(0) are set to one.

The application of the new proposed method re-
sults in the addition of penalties to the backpropagated
error signal. The task of these penalties is to put pres-
sure on the network to get all the outputs initially into
the correct half of the output range.

The penalties are dynamically adjusted as shown
in Eq. (3) in order to reflect the hardness of this task,
by assuming that the more difficult it is to move a cer-
tain output for a certain pattern to the right side, the
more often it resides in the incorrect half of the out-
put range. Every epoch an output for a certain pattern
resides in the incorrect half, its corresponding penalty
is increased in order to put more pressure on the net-
work to move the output to the right side. Once an
output reaches its correct half of the output range, its
corresponding penalty is gradually decreased and the
focus of the network on moving the output to the right
side shifts away to outputs for which the corresponding
penalties are increasing.

Figure 3 shows a representative curve of a change
of a single penalty during training. A penalty is be-
ing raised while its corresponding output resides at the
wrong side. The change occurs exponentially, because
the penalty is multiplied by 21 every epoch the output
resides in the incorrect half. Once an output reaches the
correct side, the penalty is gradually decreased by mul-
tiplying it with z~. Finally, it can reach to a minimum
of one. The steepness of the upward and the downward
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Fig.3 Representative curve of a change of a single penalty
during training

curve is controlled by the parameters 2T and 27, re-
spectively. Once an output enters its correct half of the
output range, it is not guaranteed that the output stays
there. Therefore, multiple successive phases of increas-
ing and decreasing a penalty can be expected during
training.

From a different point of view, the error surface
can be considered dynamic. The true error surface
is given by using z;p(n) = 1. In a learning process,
the error surface is modified by changing the penalties
zip(n) so that the neural network, that is its connec-
tion weights escape from temporal local minima and
move towards the global minimum. As the connection
weights approach to the global minimum, the penalties
also approach to unity. As a result, the error surface
approaches the true one, and then finally the global
minimum becomes the true one.

Dynamic penalties are preferred over static penal-
ties for two reasons. Different states of a neural network
require different penalty values. Dynamic penalties are
able to adjust to the shape of the error surface during
learning, opposite to static penalties which lack this
ability. Furthermore, static penalties still have the risk
that a neural network moves towards a local minimum,
as a result of penalty values not large enough to move
away from the local minimum.

Finally, it should be noted that it is not guaranteed
that the proposed method will converge to the global
minimum. However, from the ability of the penalties
to adjust to the error surface and to push networks out
of local minima, it can be expected that the rate of
convergence to the global minimum is increased.
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3. Control of Upper Bound

In the previous section, the upper bound for the penal-
ties is simply defined as z™** > 1. However, it is
highly dependent on the distribution of the training
data. Pattern classification problems can be catego-
rized into two cases. In one case, the probability den-
sity function (pdf) of the training data for all groups
are non-overlapping. They are clearly separated. An
example is shown in Fig. 4. For instance, the parity
check problem, the encoder problem and so on belong
to this category. In the other case, the pdf of the train-
ing data for several groups are overlapping each other.
In this case, perfect classification is impossible. Some
data locate in the other group region, and are incor-
rectly classified. An example is shown in Fig. 5. Many
real world problems belong to this case.

In the first case, the proposed penalties are not
amplified to very large values. Because, as the learn-
ing process makes progress, the boundaries of the neu-
ral network can move between the pdf of the training
data sets, which are clearly separated. After all train-
ing data locate in their own regions, the penalties are
decreased following Eq.(3). Therefore, as the learning
process converges, the penalties are also decreased. In
this case, the static condition for z™*® given by Eq.(3)
is sufficient.

On the other hand, in the second case, some train-
ing data cannot locate in the correct region, even
though the learning process converges. In this case,
the penalties for these training data are always ampli-
fied and amplified. As a result, the penalties become
very large numbers, which causes unstable behavior.

In order to avoid this problem, an annealing
method is proposed for the upper bound z™%*, which
is controlled so as to be gradually decreased, and ap-
proach to unity after a specified number of epochs.



Defining this number be the maximum number of
epochs n™** 2z™2% ig controlled by:

zmaw(n) — zmaw2—Tn (4)
log, (2™7)
T = nmaz (5)

T is a temperature, controlling the speed of lowering
the upper bound. After n™2* epochs, the upper bound
becomes 2™ (n™?*) = 1. The parameter n™% is
also problem dependent. This is true for other anneal-
ing methods as well, such as the Boltzmann machine
[11]. However, the proposed method is not a statistical
method, and can provide fast convergence.

The proposed annealing method can also be ap-
plied to the first case, in which the penalties are grad-
ually decreased by the extension itself as the learning
process makes progress.

Furthermore, when the number of the hidden units
is not enough, it is inevitable that some training data
still remain on the wrong side after learning has con-
verged. The penalties for these training data are con-
tinuously amplified, and become very large numbers.
The proposed annealing upper bound is also effective
to overcome this kind of problem.

4. Generalization Performance

In pattern classification by neural networks, an impor-
tant point is generalization. The aim of the proposed
adaptive penalty-based method is to increase the rate
of successful convergences and to accelerate the learn-
ing process itself. In this section, the generalization
performance is addressed.

As described in Sec. 2.1, the learning process can
be divided into two phases. Also described in Sec. 2.2,
the proposed method mainly works during the first
phase. Furthermore, the proposed method is not a
stand-alone learning algorithm, but is rather combined
with other stand-alone learning algorithms. This is why
it is called an extension. In the second phase, since
the penalties are gradually decreased until unity, it is
mainly the underlying learning algorithm which is ac-
tive. Therefore, generalization is also dependent on the
underlying learning algorithm.

Figure 6 shows an example, where the pdf of the
training data sets are completely separated. As shown
in this figure, there are many solutions which can pro-
vide a well reduced output error. However, in this sit-
uation, the proposed penalties are gradually decreased,
and do not affect the optimization of the boundary
for generalization. In the case of overlapping training
data sets, the penalties are also controlled to be gradu-
ally decreased until unity by using the annealing upper
bound proposed in Sec. 3. Therefore, generalization is
also mainly dependent on the underlying learning algo-
rithm.

If we employ the weight decay learning algorithm
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degree of freedom. mized w.r.t. generalization.

[10], it is expected that the boundary locates in the cen-
ter as shown in Fig. 7, where there is no degree of free-
dom, being optimized w.r.t. generalization. The pro-
posed method also can cooperate with this algorithm.

5. Comparative Study

In order to give an indication of the performance of
the new proposed method in terms of convergence
speed and success rate, comparisons have been per-
formed between the standard backpropagation [1],[11]
and RPROP learning algorithms extended with the
new adaptive penalty-based method on one side and
their original counterparts on the other side on various
problem instances. The RPROP learning algorithm is
an improvement of the backpropagation learning algo-
rithm and it has proven its superiority in many cases

5], [6]-
5.1 Test Problems

5.1.1 N-Bit Parity Problem

The N-bit parity problem is a generalization of the
‘exclusive-or’ (XOR) problem. The task is concerned
with detecting whether the number of activated input
bits is even or odd. In this study, N-bit input strings
composed of {—1,+1} are considered and the corre-
sponding target output values are defined as —1 and
+1 for input data consisting of an even, respectively
odd number of activated bits. The number of training
patterns is equal to 2%V.

The N-bit parity problem is considered as a very
hard problem to be solved by neural networks, because
a single ‘flip’ of a bit in the input string requires a
complementary classification.

5.1.2 M-N-M Encoder Problem

The task of the M-N-M encoder problem is to learn
an auto-association between M different input/output
patterns. Fach training pattern has one bit turned on,
i.e. set to one, while the remaining bits are set to zero.
Therefore, the number of training patterns equals M.
The network applied to learn this auto-association
is a two-layered M-N-M feed-forward neural network.
The complexity of this task resides in the fact that the
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number of hidden neurons is less than the number of
input and output neurons, i.e. N < M. Consequently,
the hidden neurons perform compression or encoding,
while the output neurons perform decompression or de-
coding. Whenever N < logs M, the network is being
referred to as a ‘tight’ encoder.

5.1.3 Two Spirals Problem

The task of the two spirals problem is to learn to dis-
criminate between two sets of training points which lie
on two distinct spirals in the z-y plane. These spirals
coil three times around the origin and around one an-
other. The training data consists of 194 patterns and
here, the target values describing the two classes for the
two different spirals are within the set {—1,1}.

The difficulty of the two spirals problem has been
demonstrated in many attempts to solve this problem
by applying backpropagation and many of its variants
over the years. One modification to the adapted neu-
ral networks that has often been applied is the usage
of shortcut connections [12]. By using shortcut connec-
tions, every neuron is not only connected to all neurons
in the last previous layer as is in standard feed-forward
neural networks, but a neuron is connected to all neu-
rons in all previous layers. Shortcut connections may
ease the training process, because information learned
by neurons is directly inserted in all its following neu-
rons.

5.1.4 Thyroid Function Diagnosis

This problem is concerned with diagnosing thyroid dis-
eases. Based on a patient’s query and examination
data, the functioning of the patient’s thyroid has to be
classified into one of the following three classes; under
function, normal function or over function.

The problem is obtained from the Probenl [13]
database. The data set consists of 3600 training pat-
terns and 1800 test patterns. The target output is en-
coded in a 3-bit binary string, where only a single bit
is active representing the class of the input pattern and
the other two bits equal zero. The difficulty of this
task lies in the fact that the data set is formed by three
highly unbalanced groups, i.e. 2.3%, 92.5% and 5.1%,
respectively.

5.2 Simulation Setup

The neural networks used in our simulations have been
developed using the Java Object-Oriented Neural En-
gine (Joone) [14], an open source neural net framework
implemented in the Java programming language.

All the adapted neural networks used in our ex-
periments are multilayer feed-forward neural networks.
Here, the backpropagation learning algorithm operates
in online training mode, i.e. weights are updated on a

pattern-by-pattern basis. The connection weights and
biases for all networks were randomly initialized within
the interval [—1,1]. In the simulations applying the
proposed method to the thyroid problem, a dynamic
upper bound for the penalties following Egs. (4) and
(5) was used, setting the initial upper bound z™**(0)
to 10000 and 10 for the backpropagation learning al-
gorithm and the RPROP learning algorithm, respec-
tively. In all other simulations featuring the new pro-
posed method, a constant value of 10000 was used for
the maximum penalty 2™**. Varying parts of the ap-
plied network configurations are summarized for each
experiment individually together with the simulation
results in the tables below. RPROP’s parameters set
to their default, previously proposed values [5] are omit-
ted from this network configuration summary.

In addition, a constant value of 0.1 was added to
the derivative of the logistic and the hyperbolic tan-
gent activation function for all algorithms, to overcome
the ‘flat spot’ problem [4], i.e. the problem where train-
ing progresses very slowly, because the derivative of the
activation function approaches zero, caused by the fact
that the output of a neuron is close to one of its asymp-
totic output values.

For the parity, encoder and two spirals problem,
learning of the binary task was considered complete,
if the ‘40-20-40’ criterion, described by Fahlman [4],
was fulfilled, i.e. all outputs of output neurons for all
training patterns are within the correct upper or lower
40% of its output range. The maximum training time
n™% for these experiments was set to 20000 epochs.

In simulations involving the thyroid problem, the
maximum number of epochs n™** was set to 2000.
Learning was considered complete once an RMSE of
0.125 and 0.10 was reached for backpropagation and
RPROP, respectively

For each problem instance and network configura-
tion, 25 independent runs have been performed. The
number of successful runs and the average number of
epochs to convergence, neglecting unsuccessful runs,
are reported.

5.3 Simulation Results

Tables 1 and 2 show the simulation results for the 6-bit
and 8-bit parity problem, respectively. SR stands for
success rate, 7 is the learning rate used in the backprop-
agation learning algorithm and A,,,, is the maximum
update-value used in the RPROP learning algorithm.
The low number of success rates for the backpropa-
gation and RPROP learning algorithm indicate the dif-
ficulty of this problem. The networks get easily trapped
in local minima. However, applying the new proposed
method resulted in an increase of the number of suc-
cessful runs by a magnitude. The new method provides
a way to escape from local minima. Moreover, in gen-
eral the average number of epochs to convergence was



Table 1 Simulation Results for 6-Bit Parity Problem

6-Bit Parity
Algorithm | Epochs [ SR | Settings

BP 9879 2/25 n : 0.0005
7916 2/25 n : 0.001
RPROP 7492 4/25 Amag ¢ 0.001
n : 0.0005
5953 25/25 | 2= : 0.9
2t : 1.05
n : 0.001
5522 24/25 27 :0.8
2zt :1.05
n : 0.001
6270 21/25 | 2= : 0.9
BP + 2t :1.01
Extension n : 0.001
3436 25/25 | 27 : 0.9
2zt :1.05
n : 0.001
6567 22/25 | 27 : 0.9
zt: 1.1
n : 0.001
4695 25/25 | 2z : 0.95
2zt :1.05
Amaz : 0.001
7792 7/25 2z~ : 0.9
RPROP + 2zt :1.05
Extension Amaz ¢ 0.001
7516 19/25 | 2= : 0.99
2zt :1.05
Network structure : 6-6-1

Activation function :  hyperbolic tangent

Table 2  Simulation Results for 8-Bit Parity Problem

8-Bit Parity
Algorithm | Epochs [ SR [ Settings

BP 7663 2/25 n : 0.0005
5961 3/25 n : 0.001
RPROP - 0/25 Amag ¢ 0.001
n : 0.0005,
4931 23/25 | 27 : 0.9
BP + 2t : 1.05
Extension n : 0.001,
2807 20/25 | 2~ : 0.9
2zt :1.05
Amaz ¢ 0.001
ll;j)l?tl:nosi): 10444 14/25 | 2= : 0.99
2zt :1.05
Network structure : 8-8-1

Activation function :  hyperbolic tangent

also greatly reduced by the new method.

Observing the results in greater detail, we see that
the parameter values 2~ and 2T of the new method
rather have some influence on the performance. Tun-
ing the parameters carefully can result in a very good
performance, but searching for an optimal parameter
set is usually considered a very time-consuming task.
However, less well tuned parameters still result in a
performance much better than the learning algorithms
without the proposed extension.

Tables 3, 4 and 5 show the results for the 8-2-8,
32-2-32 and 48-2-48 encoder problem, respectively.
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Table 3 Simulation Results for 8-2-8 Encoder Problem
8-2-8 Encoder

Algorithm | Epochs [ SR [ Settings

BP - 0/25 [ n: 0.005
RPROP 99 25/25

n : 0.005
E)P:t:r_lsion 4883 | 22/25 | 2~ :0.9999

2t :1.01
RPROP + z~ : 0.9999
Extension 94 25/25 2+ 1.01
Network structure : 8-2-8

Activation function :  logistic

Table 4 Simulation Results for 32-2-32 Encoder Problem
32-2-32 Encoder

Algorithm | Epochs [ SR | Settings

RPROP 3727 25/25

RPROP + 2z~ 1 0.9999
Extension 2985 25/25 zt :1.01
Network structure : 32-2-32

Activation function :  logistic

Table 5 Simulation Results for 48-2-48 Encoder Problem
48-2-48 Encoder
Algorithm | Epochs [ SR | Settings

RPROP 13914 14/25

RPROP + 2z~ : 0.9999
Extension 12170 25/25 2zt :1.01
Network structure : 48-2-48

Activation function :  logistic

It can be easily noticed that the learning algo-
rithms extended with the new approach outperform
their original counterparts also for the encoder prob-
lem. For a large range of different learning rates 7,
standard backpropagation was unable to find a solution
for the tight encoder problems. However, backpropa-
gation extended with the new method was still able to
find a solution for the 8-2-8 encoder in 88%.

The RPROP learning algorithm has a much more
satisfactory performance, even on complex encoder
problems. RPROP easily finds a solution for the 8-
2-8 and 32-2-32 encoders, however by applying the new
method the average number of epochs to convergence
was reduced. For the 48-2-48 encoder problem, RPROP
also experienced difficulties and was unable to find a so-
lution in all runs, while by applying the new proposed
method in combination with the RPROP learning al-
gorithm, the networks converged to a solution in all
runs.

Table 6 shows the simulation results of the two
spirals problem. All applied ANNs used shortcut con-
nections.

Again, the learning algorithms extended with the
new proposed method are superior to their original
counterparts. Although backpropagation as well as the
RPROP learning algorithm are able to find solutions,
the number of successful runs is greatly increased by
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Table 6 Simulation Results for Two Spirals Problem

Two Spirals
Algorithm | Epochs [ SR | Settings
BP 14141 7/25 n : 0.0005
9838 9/25 n : 0.001
RPROP 8964 16/25 | Amaz @ 0.001
n : 0.0005
11650 18/25 | 2z~ : 0.99
BP + 2t : 1.001
Extension n : 0.001
9005 19/25 | 2= : 0.99
21 : 1.001
Amaz @ 0.001
7179 23/25 | z~ : 0.9999
RPROP + 2t : 1.001
Extension Amaz ¢ 0.001
9259 25/25 | 2z~ : 0.99999
zt : 1.001
Network structure : 2-5-5-5-1 +
shortcut connections
Activation function :  hyperbolic tangent

Table 7 Simulation Results for Thyroid Problem
Thyroid
Algorithm [ Epochs | SR | Results [ Settings
TrnC : -
TstC : -
BP - 0/25 TrnA : 92.4% n : 0.0005
TstA : 92.7%
TrnC : 98.9%
TstC : 97.9%
RPROP 754 10/25 TrnA : 97.9%
TstA : 97.0%
TrnC : 98.0%
: 0.0005
BP + TstC : 97.0% | 7
Extension 1045 12/25 TrnA : 97.8% z+ ;)_3299
TstA:96.9% | © °
TrnC : 98.9%
27 : 0.99999
RPROP + | oo | g o | TSIC: 98.0% | 7y "o
Extension TrnA : 98.7% maz ;10
TstA : 97.8% ’
Network structure : 21-4-3
Activation function : logistic

applying the new method and in general the average
number of epochs to convergence is decreased.

Table 7 shows the simulation results of the thyroid
problem. Networks being trained by the backpropa-
gation learning algorithm were halted at an RMSE of
0.125 and networks being trained by the RPROP learn-
ing algorithm were halted at an RMSE of 0.10 at which
point the test set was applied. The average of the cor-
rectly classified percentage of training and test pattens
for these converged networks are given by TrnC and
TstC, respectively. TrnA and TstA give the average
percentages of correctly classified training and test pat-
terns for all 25 neural networks, that is, the converged
networks and the networks that were halted after the
maximum number of epochs.

For a large range of different learning rates 7, the
standard backpropagation learning algorithm was un-

able to train the neural networks in such a way that
the networks were able to make any distinction between
patterns from different classes. It classified all patterns
as the major class, i.e. normal function.

By applying the extension to the backpropaga-
tion learning algorithm, the performance is greatly im-
proved. The neural networks were able to classify also
a large part of the two minor groups correctly.

The RPROP learning algorithm itself is able to
obtain very good results. Still, by applying the pro-
posed method, the number of networks converged to
an RMSE below 0.10 was increased, the average num-
ber of epochs to convergence was reduced and also the
quality of the solutions itself regarding generalization
was improved. However, in order to obtain these re-
sults, the initial maximum penalty 2™**(0) had to be
reduced to 10.

Finally, we have confirmed that the proposed
method can be successfully applied in combination with
the weight decay method [10]. Regarding the thyroid
problem, there isn’t much space left for optimization.
However, simulations applying the RPROP learning al-
gorithm extended with the proposed method in com-
bination with the weight decay method resulted in a
slightly higher success rate and still outperformed the
RPROP learning algorithm without the extension in
combination with the weight decay method.

6. Observation of Penalties

In order to learn more about the effects and behav-
ior of the applied penalties, the penalty values during
training have been studied. The lower the values of the
penalties are during the learning process, the less pres-
sure the learning algorithm puts on the network, and
the more the extended learning algorithm resembles its
original counterpart. On the other side, the higher the
penalty values are, the more pressure the learning algo-
rithm puts on the network to get the outputs into the
correct half of the output range, and the more it oper-
ates differently from the original learning algorithms.

Here, a single representative simulation run of
a neural network, implementing the backpropagation
learning algorithm extended with the new proposed
method and having its parameter values 7, z~ and 2zt
set to 0.001, 0.9 and 1.05 respectively, applied to the 6-
bit parity problem, has been further investigated. For
this single run, the ‘40-20-40’ criterion was fulfilled at
the 35037 epoch.

By observing the change of the penalty values that
takes place during training, two main groups of penal-
ties can be characterized. Most penalties belong to the
first group, where the penalties undergo a change only
in the beginning of the learning process and their val-
ues vary somewhere between 1 and 20. Of course, this
range is highly dependent on the parameter values 2z~
and zt. An example of a change of a single penalty,
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Fig.9 Representative graph of the change of the values of a
penalty from the second group

representative for the penalties of the first group, is
shown in Fig. 8. The second group contains penalties,
which values are raised to larger values, somewhere in
the range of 1 to 100. Furthermore, these penalties of-
ten seem to undergo a change longer than the penalties
from the first group. A representative for the penalties
of the second group is shown in Fig. 9.

Not only from the results of the performed simula-
tions, also from the observation of the change of penalty
values during training, it can be concluded that the
penalties in the new proposed method do play an ac-
tive role in the learning process. Especially, the penal-
ties from the second group heavily pressure the neural
network in order to get the outputs in the correct half
of the output range.
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7. Tuning Extension Parameters

In the new proposed method two important parame-
ter values, namely 2z~ and 2z, need to be determined.
The two parameters have a great influence on the per-
formance of the new method and are problem depen-
dent. How to determine the decremental and incremen-
tal penalty values efficiently remains an open problem.

However, from our experience the following re-
marks can be made. By initializing z+ with values too
close to one, penalties can’t be raised to large enough
values to become effective resulting in a performance
similar to underlying learning algorithm without the
extension. On the other side, initializing 2% with val-
ues too large, the danger exists that too much pressure
is being put on the network driving its weights into sat-
uration. Furthermore, a larger 2T seems to require a
smaller 2z~ in order to keep the learning process stable.

The RPROP learning algorithm seems more re-
sponsive to the penalties than the backpropagation
learning algorithm. As a result, the RPROP algorithm
requires values closer to one for 2~ and z*, in com-
parison to backpropagation. The two main differences
between the backpropagation learning algorithm and
the RPROP learning algorithm are a static learning
rate versus a dynamic learning rate and online train-
ing mode versus batch mode. The reason behind these
sensitive extension parameters in combination with the
RPROP learning algorithm can be analyzed as follows:
In the RPROP learning algorithm, the learning rate is
adjusted during training. For instance, if the derivative
of the backpropagated error doesn’t change in direction
in successive epochs, the learning rate is increased [5],
[6]. Thus, it has similar effect as the proposed method.
Therefore, 2~ and z1 cannot be set far from unity. Oth-
erwise, the pressure might become too large, resulting
in an unstable learning process.

In case of the parity, encoder and two spirals prob-
lem, the penalty upper bound 2™%* has a rather small
influence on the performance of the learning algorithm,
at least if it is set to a large enough value. However,
the RPROP learning algorithm extended with the new
method applied to the thyroid problem seems to bene-
fit from a small initial maximum penalty. The reason
is the same as analyzed above.

8. Concluding Remarks

A new adaptive penalty-based approach applicable as
an extension for squared-error functions in backpropa-
gation and its variants is proposed. The new method
initially puts pressure on artificial neural network in an
attempt to get all the outputs for all training patterns
into the correct half of the output range, instead of
mainly focusing on minimizing the difference between
the target and actual outputs.
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Simulations have been performed and the results
have demonstrated the usefulness of the proposed ap-
proach. By applying the new algorithm, the rate of suc-
cessful runs can be greatly increased and the average
number of epochs to convergence can be well reduced
on various problem instances. The new method is easy
to implement and computationally inexpensive.

Furthermore, the observation of the change of the
penalty values during training has demonstrated the
active role the penalties play within the learning pro-
cess.

Future research will be directed towards learn-
ing tasks consisting of patterns having continuous tar-
get output values. We intent to investigate on how
to decide appropriate thresholds defining the output
halves for real-values output patterns. Furthermore,
how to decide appropriate decremental and incremen-
tal penalty values, i.e. values for 2~ and 2% will also be
a future research project.
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