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A Discrete Optimization Method for High-Order FIR Filters with
Finite Wordlength Coefficients

Kenji NAKAYAMAT, Member

SUMMARY This paper proposes a new discrete optimization
method which is mainly directed toward saving computing time
for high-order FIR filters. In the proposed method, a transfer
function is first approximated in a cascade form of a low-order
function W(z) with pre-rounded coefficients and a high-order
function F(z) with infinite precision coefficients. Second, rounded
F(z) coefficients are discretely optimized so as to minimize the
mean square error of the amplitude response. In other words, the
roundoff error spectrum is shaped so as to be suppressed by a
weighting function W(z). In order to save computing time, the
error is equivalently evaluated in a time domain, and the F(z)
coefficients are divided into small groups in the discrete optimiza-
tion procedure. Design examples for 200 tap FIR filters demon-
strate practical usefullness.

1. Introduction

Coeflicient wordiength is one of the factors which
determine circuit complexity of digital filters. There-
fore, it is important to realize desired filter responses
with short wordlength coefficients™®,

There are two approaches to the above design
objective. One approach is to statistically estimate filter
response deviations due to coefficient roundoff errors.
Based on this estimation, tolerance and filter length,
which are used in an exact design procedure, are
modified such that the filter responses for rounded
coeflicients just meet specified characteristics®~®,

The other approach is to optimize the finite word-
length coefficients so as to improve the deviated filter
responses. Since, in this optimization, the coefficients
are restricted to have discrete values, this approach is
currently called “Discrete Optimization”. This paper is
focused on the second approach.

Several useful approaches to infinite impulse
response (IIR) filters and relatively low-order finite
impulse response (FIR) filters have been reported. They
mainly include random search®-® univarate search®®,
branch and bound™®~%* Hook-Jeeves method"™®, and
iterative roundoff and optimization"®. On the other
hand, for high-order FIR filters, mixed-integer program-
ming techniques™”~“? and a local search method®” have
been mainly applied. These approaches, however, still
require a large amount of computing time.
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This paper proposes a new discrete optimization
method which is mainly directed toward saving comput-
ing time for high-order FIR filters®”. In the proposed
method, a transfer function is first approximated in a
cascade form of a low-order function W(z) with pre-
rounded coefficients and a high-order functions F(z)
with infinite precision coefficients. Second, rounded
F(z) coefficients are discretely optimized so as to
minimize the mean square error of the amplitude
response. In order to save computing time, the error is
equivalently evaluated in a time domain, and the F(2)
coefficients are divided into small groups in the discrete
optimization procedure.

2. Discrete Optimization by Error Spectrum Shaping
2.1 Algorithm

A transfer function H(z) is synthesized in a cascade
form

H(z)=W(2)F(2), (1)

where T is a sampling period. W(z) is a low-order
function with pre-rounded coefficients. F(z) is a high-
order function and has infinite precision coefficients in
an exact approximation procedure. First, H(z) is ap-
proximated through conventional methods, for instance,
the Remez-exchange algorithm®.

Let Fo(2) be a function with the rounded coefficients
of F(2), and let 4F(z) be

— eT

R=€

AF(z2)=F(z)— Fo(2). (2)
AH(z) is used to expresses
AH(2)=W(2)AF(z). (3)

In the proposed method, the mean square of |[4H (e™)| is
employed as an error criterion,

E=% f | 4H (o) do. (42)
From Eq. (3),
E=% / W () AF () Fdo (4b)

where T is assumed to be unity. Minimizing E is equal
to shaping |4F(e’)| so as to be effectively suppressed by
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|W(e™)|. In order to suppress |4F(e™)|, the W(z)
amplitude response is required to have small values in
the stopband.

2.2 Filter Response Improvement
Let Foo(z) be a function with discretely optimized

coefficients of F(z). Furthermore, the following func-
tions are defined,

H(2)=W(2)Fo(2) (5a)
Hoo(2) = W(2) Fao(2) (5b)
AFo(2)=F(2)— Fo(2) (5¢)
AFoo(2)=F(2)— Foo(2) Gd
AHY(2)=W(2)AF2) (5e)
AHe(z)= W(2)AFo(2) (51)

In these equations, Fo(z) is assumed to have the
coefficients, which are obtained by only rounding off the
F(2) coefficients. Furthermore, Ho(z) and dHe(z) are
used to denote a function with the rounded H(=z)
coefficients, and

AH(z)=H(2)— Ho(2) 5g)

respectively. By employing the assumption that the
AHw(z) amplitude response is flattened through the
discrete optimization, it can be estimated as follows:

=% f :IAHQo(ej”’)|Zda)= c 6 2)

where
|dHoo(e)|=C
From Egs. (5f) and (6 a),

2 n . - .
ZC_%[nl W(ejw>I—Zda)zz%-/_‘ﬂlAFQO(er)lzda). (7)

—r<w<mw, C :constant.(6b)

When the coefficients of 4Fg(z) are uniformly distribut-
ed in the region (—4./2, 4,/2),

T . 2
o [l AFale® ) do=Ne gy (8)

where Nr is the filter length of F(z).
|4Ho{e’*)| can be estimated by

Therefore,

(NF 4, >
| AHoole™)| =i (9)
R 1/W (™).

_where ||*|» is an L, norm.
On the other hand, the deviation |4H(e™)| can be
estimated by

o= 40 (10)

under the assumption that the 4H(z) coefficients are

uniformly distributed in the region (—4/2, 4/2), and -

|4Hq(e’®)| is flattened in —r£Lw<Lx. N is the filter
length of H(z). Furthermore, 4H§(z), given by Eq. (5
e), is estimated by

AH )= W ()| Ne g ) (11
under the same assumptions. From Egs. (9), (10) and
(11), the proposed algorithm can improve the filter
response from those obtained only rounding off the
coefficients of H(z) and F(z) in the frequency band,
where the following inequalities are held,

4, N
Tl <V N 12
]]TWZ(”Z@WZ% [ W (e7)| 4o (13)

How to design W(z) with short wordlength
coefficients, which satisfies the above conditions, is one
of the important design objectives, and will be discussed
in the following section.

From Egs. (9) and (11), W(z) can be regarded as
a weighting function or a shaping function for the
coefficient roundoff error effects. Hence, W(z) is called
“weighting function” in this paper.

3. Design of Weighting Function
3.1 Design Factors for W(=z)

Several factors exist which must be taken into
account in designing W(z). They include (a) pre-
rounded short wordlength coefficients, (b) the condi-
tions given by Eqgs. (12) and (13), (¢) the output noise
reduction, which is caused by rounding off the multiplier
outputs®®, and (d) optimizing the H(2) characteris-
tics with a short filter length. From factors (b)-(d),
it can be roughly concluded that W(z) is required to
satisfy

[W(e™)|~1,
W ()1,

WwE L (14 a)

(14 b)

where, 2, and £ indicate the passband and stopband,
respectively. As will be described in the next paragraph,
W(z) is handled as a fixed function in an exact H(z)
approximation procedure. Therefore, it is essential to
use a low-order function for W(z) to obtain a sub-
optimum solution in the weighted Chebyshev sense for
the given filter length N. Furthermore, it is desirable to
use short wordlength or the power of 2 coefficients for
W(z), from the view point of simplifying hardware
implementation.

WE Qs

3.2 Filter Response Improvement

One useful approach to designing W(z), which
satisfies the conditions given by Eq. (14) with a low-
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order function, is to use the zeros, which are located on
the unit circle in the stopband. In this paragraph,
numerical examples demonstrating filter response
improvement are provided by using

W(2) =151+ +2 (1 +227+27). (15)

The L. norm of 1/W(z) is approximately calculated
as

I1/W(e*)l*~5.2x10* (16)

Furthermore, letting 4, be 74, and letting N and Nr be
200 and 196, respectively, the amplitude response devia-
tions are estimated by

A

|AH (") P=2004 (17 a)
2
|AE () P=196 S5 W ()P arb)
2
IAHoo(e"‘”)lzzl%%/S.Z X104, 17 ¢)

They are shown in Fig. 1, where the square amplitude
response are all normalized by 4?° This figure shows
that |dHqo(e’™)| is greatly decreased from |Ho(e™)|.
Furthermore, in the frequency bands, where | W(e™)| is

xad
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Fig. 1 Example for amplitude responses of squared error func-
tions.

11t is assumed that the Foo(z) coefficients are optimized in the
region of +34 around the Fo(z) coefficients. Hence, the
AFe(z) coefficients can be assumed to be distributed in
(~Az/2, Az/Z), where Az:7do.
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not sufficiently small, |4H{(e™)| is larger than
[4Hoo(e’)|. In other words, the optimized response is
superior to that obtained by rounding off the F(z)
coefficients in the mini-max sense, as well as in the
mean Square sense.

3.3 Transfer Function Approximation

After designing W(z), H(z) is first approximated in
a cascade form W(z)F(z) with the infinite precision
coefficients of F(z) as variables. Conventional
approaches to FIR filter approximation®® can be
basically applied. One approach by the Remez exchange
method is described here.

Letting D{(w) and U(w) be a desired amplitude
response and a weighting function for error evaluation,
respectively, a set of equations is expressed as

Ulw)[D(ws)—|H(e™)|]=(-1)* (18)
k=0,1,- 7

where {w:} is a set of the extremal frequencies®®. From
Eq. (1), Eq. (18) can be rewritten as

| W (U ()| W) D(wx) —|F(e™*)]
=(—1)* (19)

Since |W(e’®)| is fixed, F(z) can be approximated using
| W(e’)|U(w) and | W (e™)|D(w) as modified weighting
function and desired amplitude response, respectively.
The number of the extremal frequencies is equal to
the degrees of freedom in F(z). Therefore, the result
obtained by solving Eq. (19) becomes a sub-optimal
solution for the order of H(z). For this reason, it is

@el |
72 1

min {As}
71 A

70 A

————

H (Z)

69 A
W(Z)F(Z) -o—o—
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Fig. 2 Comparison between amplitude responses approximated
with direct form H(z) and separated form W(z)F(z),
where W(z) is fixed, through Remez-exchange method.
max{Apy} and min{As} mean maximum passband ripple
(peak-to-peak) and minimum stopband attenuation,
respectively.
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necessary to employ a low-order function for W(z), as
previously mentioned.
Examples :

Differences between amplitude responses of H(z)
and W{(z)F(z), which are approximated by the Remez
exchange method, are given in Fig. 2, where max{Ap}
and min{As} imply the maximum passband ripple (peak-
to-peak) and the minimum stopband, attenuation,
respectively. The cutoff frequency is varied according
to the filter lengths, so that the resulting amplitude
responses become mostly the same in all cases. The
function given by Eq. (15), which has the zeros located
in the stopband, is used for W(z) in all cases. Figure 2
shows that the differences are sufficiently small in any
case, and slightly decrease in ascending order of filter
lengths.

4. Discrete Optimization Algorithm
4.1 Saving Computations

Another important feature of the proposed algor-
ithm is to accomplish a considerable saving in computa-
tions. For this purpose, first, the mean square of an
error function is employed as an error criterion, which
can be transformed into the time domain through
Parseval’s relation®®. Second, the F(z) coefficients are
divided into small groups in the discrete optimization
procedure.

Letting 4k, be an impulse response for 4H(z), the
error evaluation given by Eq. (4) can be transformed
into

N-1
E= HZJOAh,,Z. ) (20)

By letting 4f, and w». be impulse responses for 4F(z)
and W(z), respectively, 4k, is expressed by

Ahn= % Wmdfn~m

m=ni

mi=max{o, n— Nr+1} 2D

ne=min{n, M —1}

where M is the order of W(z). From Egs. (20) and (21),
E is rewritten as

E=3(% wndfa-m). (22)

Although all A4f, are needed to calculate E given by
Eq. (22), the idea behind the new approach is to reduce
the number of 4f, which are simultaneously optimized.
This can be done by dividing a sum of 4#,? into small
groups. In other words, E is successively evaluated by
using the partial sums of 4%,* in the discrete optimiza-
tion procedure. Estimation errors caused by this divi-
sion are compensated for by overlapping the adjoining
partial sums. ‘

4.2 Discrete Optimization Procedure

As described above, E is divided into

b=d

E= E EUK-K"),

K'<K (23a)

K-1

EUK-KN= gz) Ahyx—xn~ (23b)
The partial sum &;x-xy is individually minimized
instead of E. The adjoining partial sums eyx-x, and
eusnk—xn include the same 4k, (K—K)—K'+14£i<
I(K—K’). This also means that they contain (K'+ M)
common coefficients 4f;. In the eyx-x» minimization,
the coefficients in the set {4f/:|{(K—K)—K+1-M<i<
I(K—K’)— L— L'}, which are already optimized at the
e, k< I(K—K’), minimization step, are fixed, and the L
+ L’ coefficients in the set {4fi|I(K—K)—~L—L +1<§
£Z](K—K')} are optimized. After minimizing eux—x»,
the L coefficients included in the set {4fi|{(K—K)—L
—L'+1£i£(K—K)— L'} are fixed, and the remaining
L’ coefficients included in the set {4f|I(K—K)—L +1
£i2£](K—K’)} are further optimized at the next
Eu+1)x -xn Minimization step. In the above expression, L
is equal to K—K'.
Example for Partial Sums:

An example for the partial sums and 4f; are illus-
trated here, using parameters K =5, K'=1, M =4, L=4,
and L'=1.

ew: dfz dfs dfs Adfs 4dfe A dfs dfs dho
eu: dfs A4fr Adfs dfs dfw dfn dfe dfis dfu
€18 . Aflo Afu Afe Afis _4_@ dfis dhe Adfe _4_@
en: dfu dfis dfe dfz % dfis dfw  dfa @

Fixed Optimized
For instance, in the e, minimization, 4f;-Afs are fixed
and Afs-Afi are optimized. In the ey minimization, dfe
is further optimized using the result obtained in the
previous step as the initial guess.
Initial Guess :

Coefficients of AFy(z), defined by Eq. (5c), are
taken as the initial guess for Afx.
Search Method :

A global search method is employed. The reasons
are explained as follows: First, local and heuristic
search methods cannot avoid the risk of falling into a
local minimum solution. Second, since the proposed
approach drastically saves the number of assignments to
be evaluated, the global search does not require a large
amount of computing time.

Search Region:

A search region means the number of grids on
which Af. are discretely optimized. The number of
assignments for e, x-x» evaluation is exponentially pro-
portional to the number of grids. Therefore, a moderate
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search region must be chosen.
4.3 Modified Weighting Function

Since the error is evaluated with the mean square of
|4H(e’*)|, strictly speaking, the obtained solution is
optimum only in the mean square sense. Therefore,
when the mini-max error criterion is employed, the
weighting function, used in the discrete optimization
procedure, must be somewhat modified so that max
{l4H(e’)]} is minimized. =~ An example for the
modification is provided in Sect. 5.

4.4 Number of Computations

Since the number of 4f,, which are included in the
&, expression, is L+ L, all possible combinations of 4f»
in evaluating &, become P***, where P is the number of
grids. Furthermore, the number of ex, which are includ-
ed in the E expression, is [Nr/(K —K’)] which implies
the maxmum integer not exceeding Nr/(K—K).
Hence, the total number of assignments, required in the
E evaluation, becomes
Mo
K—-K’

N(E)zP”L’[ (25)
The numbers of real multiplications and additions,
required in the &, calculation per 4f.» combination, are
both (M +2)K. The total numbers are given by

NMun(E)=NAdd(E>=PL+L'{K%;{,](M+2)K. (26)

On the other hand, the error evaluation by Eq. (4)
requires

Nr

Nrﬁult(E)=Nf\dd(E>=PL+U|:K_K,

](L-l—L’)ZNp

(27

under the assumption that the number of A4f. to be
simultaneously optimized is L+ L', and the number of
frequency points, on which |[4H(e’)| is calculated, is
2Nr. A saving of computations, achieved by the
proposed method, can be expressed by )

NuwlE) __ (M+2)K
NualE) ~ (L+L)2N-

For example, by using Nr=200, K=5, K'=1, M=4, L=
4 and L’=1, the ratio becomes 1.5%. This demon-

strates that a considerable saving in computing time can
be achieved.

(28)

4.5 Flow Chart

A flow chart for the proposed algorithm is shown in
Fig. 3. Necessary filter length and tolerance are esti-
mated, taking into account filter response improvement
rates achieved by the proposed approach.
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Eilfer response specificcﬂons’

| Estimate filter length N—I

Determine W(z) with
pre-rounded coefficients
I

Approximate H(z)=W(z)F(z)with
infinite precision coefficients

f
Roundoff F(z) coefficients=Fq(z)
Initial quess: AFg(z)=F(z)~Fglz)

l

Select parameters K,K', L,L"
and search region

. 4
-K' | Optimize Afy e {Afj[k-K+[-M ¢
i<k} through global search so
tominimize £k
i
Are all Afy, O< n<Ng-l, optimized
Fs

x x

Optimized functions:
Fao (2)= Folz)}+ AFgolz)

Hoolz)=W{z) Foo(z)

Fig. 3 Flow chart for proposed discrete optimization method.

5. Design Examples
5.1 Design Parameters

Table 1 shows filter responses and design parame-
ters utilized to examine the proposed algorithm perfor-
mances. The W(z) coefficients are restricted to integer
values in these examples. F(z) with infinite precision
coefficients is approximated through the Remez
exchange method. The rounded F(z) coefficients are
represented with 8, 10, 12, and 14 bits wordlengths,
which do not include a sign bit. The maximum
coefficient value is normalized to unity. Frequency
response error is evaluated in the mini-max sense.
Thus, a weighting function W*(z), used in the discrete
optimization procedure, is modified from W(z) so that
the maximum error is decreased. The search region is
+ 4, or £34 around the A4Fy(z) coefficients, where 4
corresponds to the least significant bit. This means that
the numbers of grids are three and seven, respectively.

5.2 Optimized Filter Responses

Coefficient Value Scaling :

The F(z) coefficient values become slightly larger
than those for H(z), by separating W(z). This is equiva-
lent to improving coefficient accuracy under the same
wordlengths. The F(z) coefficient wordlengths are
equivalently increased by 7 bits
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Table 1 Filter specifications and discrete optimization parame-

ters.
Parameter L PF B PF
H(z) 200 taps 200 taps
Sampling freq. 400 Hz 400 Hz
Passband O0-50Hz |57-142Hz
Ripple (Ap) | t0.085dB [|£0.035d8B
Stopband 56-200Hz | O- 50 Hz
I150-200 Hz
Attenuation 72.5dB 80.0 dB
W (2) (1427'+27%) [(1-22)
x(1+#27'+273)
W*(Z) (1+2z7"% i2)2 (1-272)?
F (2) 196 taps 196 taps
Coefficient
8,10,12,14 |8,10,12,14
wordlengths bits bits
Search region | tAo,t3 Ao | tAo, tAo
Search method Global Global
K 5 5
K’ ! l
L 4 4
L | |
Error mini- max | mini-max
criterion

(dB)
0.2

{dB)
02

Passband ripple

A
i a

-02 : ,

Attenuation ((dB)
UAAUAAANMANAS
1 F70
ni
i y“u‘ U
LM vy s 60
O P N B
mheihe [
/I\,"\‘,",H!l / | ,'\1‘\}’_50
Passband ripple \ Yy WA
VU a0
o o 100
Frequency [Hz)
. (dB)
Attenuation
’80

80

Frequency (Hz)

Optimized frequency responses.
with rounded coefficients.

with rounded coefficients.

(a)

solid line :

(b)

|00

n =logz{mgx{ )l mgx(hn)}.

(29)

Numerical examples for the filters and W(z) listed in
Table 1 are given in Table 2. The wordlength increases
are around 0.1-0.3 bits, which are negligible, compared

with
will

improvements gained by the proposed method, as
be demonstrated.

Coefficient Values and Amplitude Responses :

Table 3 gives coefficient values for F(z) , Fo(z) and
Foo(2). Figure 4 shows amplitude responses for H(z),
Ho(z) and Heo(2), in the case of LPF with 10 bit word-

lengths and the search region £34e.

The Amplitude

response for Hoo(2) is sufficiently improved from those
for Hy(2z) in a whole frequency band. Furthermore, in

the
Pprop:

passband and the relatively low stopband, the
osed approach can decrease the deviations from

those for HJ(z).

Table 2 Coefficient value scaling effects by separating weight-

ing function W(z) from H(z).

T
0.2695
0.2927
0.3461
0.3813

W(Z)
2 nd

4 th
2nd
4 th

Type 7 (bits)
0.08
0.20
0.14

0.27

T ]
0.2546
0.2546
03134
0.3163

LPF

BPF

(dB] Attenuation
- UUUUUUUUUUUUUU\J WUUUUUUUUUUUUUUUWUUUUUUUUUUUU\/
70- .
N‘. B W b )
| ]
e T T YR L L B R IV
[ W N ,".l[["li,‘”‘ll"l.l |||;\HI\] oA oo
solit st U L U R e AR T T
LFAAY OV T [ Yoot i e Ay
Jv Uy u \\]/ \J [FERRVERY %
40 v
T T T T T 1
100 120 140 160 180 200
(a) Frequency {Hz)
@Bl Attenuation
by 1 (- i 4
oyt 1 ik s, gt I K
ool Ll iintty B8y 0
S AR NG WU AR L
704\ PV VIRTAUS AR LAY u\\d, LUV W
3 ‘ul 5 v h
; v
60| /
k‘l
50
407
T T T T T T T T T 1
100 120 140 160 180 200
(b) Frequency (Hz)

solid line : H(z) with infinite precision coefficients, dashed line: Ho(z)
W(z)Fo(z) with optimized coefficients, dashed line:

W(z)Fo(2)
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Table 3 Optimized F(z) coefficients for LPF with 4th-order W(z) and with seven grids. F(z), Fe(2) and Feo(z) are
transfer functions with infinite precision, rounded and optimized coefficients, respectively. Coefficient values

are all scaled by 2%°.

NO.  F(Z) Fa@) Fgolz) | NO.  F(2)  Faz) Fgo(2)
100 115.86 116 114 150  22.97 23 26
101 ~0.44" a 2 151 =26.70 =27 =29
102 =65479 =66 -69 152 29.62 30 32
103 -88.31 -88 =85 153 =20.10 =20 =22
104 =47.10 -47 =50 154 27.90 28 29
105 -2.48 =2 a 155  =27.04 =27 =27
106 46413 46 44 156  23.82 26 23
107 43,23 43 45 157 =31.26 -31 ~30
108 36.37 36 35 158 24.16 24 23
109 -13.38 -13 =12 159 =23.84 =24 =23
110 =23.03 -23 =25 160 28421 28 28
111 “41.94 -42 -39 161 =22.85 -23 =23
112 =-8.51 -9 ~-12 162 28.30 28 28
113 -2.57 -3 ¢] 163 ~28.17 -28 -27
114 36436 36 36 164 22458 23 21
115 13.24 13 1" 165 =26464 =27 =25
116 21.61 22 25 166 23.23 23 22
117 =20.33 =20 -23 167 =23.48 =23 =23
118 -8.51 -9 -8 168 28.26 28 29
119 =32.50 -33 =31 169 =23.45 =23 =25
120 9.50 9 7 170 24.09 24 26
121 =5.70 =64 =3 171 =23.59 =24 =25
122 32.35 32 30 172 19.72 20 20
123 =0.69 =1 1 173 -24411 =24 =23
124 17.81 18 17 174 23.39 23 21
125  -26.78 =27 =27 175 =21.51 =22 =19
126 3.57 4 5 176 22.72 23 21
127 ~28.9%0 =29 =31 177 ~18.04 -18 -18
128 18.04 18 20 178 18.32 18 20
129  =8.26 =8 =9 179 =20.39 =20 =23
130 30.80 31 340 180 18.34 18 21
131 =12.53 =13 =1 181 =19.77 =20 -22
132 19458 20 18 182 17419 17 19
133 =30.39 =30 =29 183 =13.58 =14 =15
134 10459 11 10 184 15.07 15 16
135 =25.47 =25 =26 185 ~13.78 =14 =14
136 23.70 24 25 186 14.34 14 14
137 =14.16 =14 =16 187  =14.86 =15 =15
138 31.96 32 34 188 10.17 10 11
139 =20.58 =21 =22 189 =9.33 =9 =11
140 19.68 20 20 190 8.18 8 10
161 =29,96 =30 =29 191 “6.64 =7 =7
142 16437 16 14 192 9.90 10 8
143 =26,15 =26 =23 193 25.32 =5 =2
144 29433 29 26 194 5420 5 2
145 =19.09 =19 =16 195 =0.79 -1 1
146 29.94 30 27
147 =23.39 =23 =21
148 20453 21 19
149 =31.37 =31 =31

NO.  F(z) Fa@) Fgolz) | NO.  F(@)  Falz) Feolz)
0 =0.79 =1 =1 50 =19.09 -19 =20
1 520 5 6 51 29433 29 31
2 ~5.32 -5 -7 52 =26415 =26 -28
3 9.90 10 12 53 16437 16 18
4 =b.64 -7 -8 54 =29.96 =30 =31
5 8418 8 8 55 19.68 20 20
[} ~9.433 =9 -8 56 =20.58 =21 =20
7 10.17 10 9 57 31.96 32 30
8 =14.86 -15 =15 58 14416 =14 -11
9 14434 14 16 59 23,70 24 21
10 ~13.78 ~14 -t6 60 =25447 =-25 -24
11 15.07 15 16 61 10,59 11 10
12 ~13,58 =14 =13 62 =30.39 =30 =30
13 17.19 17 6 63 19.58 20 19
14 =19.77 =20 -19 b4 =12.53 -13 =11
15 18434 18 19 65 30.80 31 28
16 =20.39 =20 -22 66 =84.26 -8 -5
17 18,32 18 20 67 18.04 18 16
18 =18.04 ~18 -19 68 =28.90 =29 =29
19 22.72 23 23 69 3.57 4 <]
20 =21.51 =22 -22 70 =26.78 -27 =30
21 23.39 23 25 71 17.81 18 20
22 =24.11 -24 =27 72 =069 -1 -1
23 19.72 20 23 73 32.35 32 31
24 ~23.59 =24 =26 T4 ~5.70 -6 -4
25 24.09 24 25 75 9.50 9 9
26 “23.45 ~-23 =23 76 =32.50 =33 =33
27 28.26 28 27 77 -8.51 -9 -8
28 ~23.48 =23 -22 78 =20.33 =20 -20
29 23.23 23 22 79 21.61 22 20
30 =26.64 =27 =26 30 13.24 13 16
31 22.58 23 23 81 36.36 36 33
32 ~28.17 ~-28 =30 82 ~2.57 -3 0
33 28.30 28 31 83 -8.51 -9 -9
34 =22.85 =23 -26 84 41,94 -42 -43
15 28.21 28 31 85  =23.03 =23 =21
36 =23.84 =24 “2b 86 -13.38 -13 -16
37 24416 24 26 87 36437 36 39
38 =31,26 =31 =33 88 43.23 43 41
39 23.82 24 26 89 464,13 46 48
40 =-27.04 -27 -30 90 =248 -2 =4
41 27.90 28 31 91 =47.,10 =47 =44
42 =20.10 =20 -23 92 -88.31 -88 =89
43 29,62 30 32 93 =65.79 =66 ~65
b4 =26470 =27 =28 94 ~0.b4 0 -2
45 22.97 23 23 95 115.86 116 118
46 =31.37 =31 =30 96 228458 229 226
47 20,53 21 18 97 299470 300 302
48 =23.39 -23 -21 98 299.70 300 298
49 29,94 30 29 99 228,58 229 230
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Fig. 5 Frequency response improvements for LPF. Symbols
®, ~ and O correspond to He(z), W(z)Fe(z) and
W(z)Fo(z), respectively. H(z) with infinite accuracy
coefficients is shown by dashed and dotted line.

5.3 Frequncy Response Improvement Rates

Maximum passband ripple (peak-to-peak) App and
minimum stopband attenuation As are shown in Figs. 5
and 6. The solid and dashed lines for Hgo(2) indicate
the cases where the numbers of grids are three and
seven, respectively.

The proposed method can provide sufficiently
reduced passband ripples compared with those obtained
by only rounding off. W(z)F(z) cannot inherently
decrease the passband ripple, because |W(e™)| is
required to be approximately unity in the passband,
from the viewpoint of output noise caused by rounding
off the variables in the filter®®.

Stopband Attenuation :

Hqo(z) is superior to HJ(z) in the LPF case. The
difference between them in the BPF case is, however,
small. The reason can be explained as, |W(e’™)| has
relatively small magnitude in the whole stopband.
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Fig. 6 Frequency response improvements for BPF.

Coefficient Wordlength Reductions :

The coefficient wordlengths, with which the same
filter responses are obtained through the proposed
method as those for Ho(z) and H{(z), can be reduced by
3 and 2 bits in the cases of LPF and BEF, respectively.

Taking into account filter response improvements
for arbitrary filter responses in both the passband and
stopband, the new approach efficiency can be confirmed.

5.4 Weighting Function

A combination of W(z) and W*(z) is further opti-
mized by using pre-rounded real values for the W(z)
coefficients. Hence, further improvements in filter
responses can be expected.

5.5 Computing Time

The execution time required in optimizing LPF
with the search region 34 on a general purpose com-
puter NEC ACOS 900 was 97 seconds. This result
obviously allows practical usage of the proposed method
for high-order FIR filters.

6. Conclusion

This paper has presented a discrete optimization
method, which is computationally more efficient for
high-order FIR filters. The proposed approach has two
important features. First, the error spectrum is shaped
so as to be effectively suppressed by a weighting func-
tion. Second, in order to drastically save the number of
computations, the coefficients to be discretely optimized
are divided into small groups. Design examples for 200
tap FIR filters demonstrated high efficiency for the
proposed method in filter response improvements and
computing time.
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