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SUMMARY  For system identification problems, such as noise
and echo cancellation, FIR adaptive filters are mainly used for
their simple adaptation and numerical stability. When the un-
known system is a high-Q resonant system, having a very long
impulse response, IIR adaptive filters are more efficient for re-
duction in the order of a transfer function. One way to realize
the TIR adaptive filter is a separate form, in which the numer-
ator and the denominator are separately realized and adjusted.
In the actual applications, the order of the unknown system is
not known. In this case, it is very important to estimate the total
order and the order assignment on the numerator and the de-
nominator. In this paper, effects of the order estimation error on
the residual error are investigated. In this form, indirect error
evaluation called “equation error” is used. Through theoretical
and numerical investigation, the following results are obtained.
First, under estimation of the order of the denominator causes
large degradation. Second, over estimation can improve the per-
formance. However, this improvement is saturated to some extent
due to cancellation of the redundant poles and zeros. Third, the
system identification error is proportional to the equation error
as the adaptive filter approaching the optimum. Finally, there
is possibility of recovering from the unstable state.as the order
assignment approaches to the optimum in an adaptive process us-
ing the equation error. Computer solutions are provided to aid
in gaining insight of the order assignment and stability problem.
key words: [IIR adaptive filter, equation error, order assignment

1. Introduction

In case of Infinite Impulse Response (ITR) adaptive fil-
ters the number of taps can be reduced drastically. It
is to be noted here that a number of IIR or ITIR like
methods have been proposed both in adaptive signal
processing and system identification community [ 1]-[5].
However, the class TIR itself comes off a more general
ARMAX model family [6]. Though the equation and
the output error methods are common in IIR class, the
output error corresponds to actual transfer function er-
ror, whereas the equation error is a filtered version of
it. This will be made more clear in Sect. 2.

In applying the IIR adaptive filters, it is very impor-
tant to optimize order assignment on the numerator and
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the denominator. Especially, when the total number of
coefficients is limited, performance of the IIR adaptive
filter is very sensitive to this order assignment.

There exist some methods to estimate optimum or-
der for non adaptive system identification problems; one
of them is Akaike’s Information Criterion (AIC)[7],
which uses the final prediction error to calculate opti-
mum order in least square problems. In other cases, e.g.,
in speech processing applications[8],[9], which gener-
ally correspond to a particular prediction error cate-
gory, expressed later in Eq. (9) in Sect. 2, other model or-
der estimation methods also have been proposed [8],[9].
However, it seems that investigations around the “sepa-
rated realization of the IIR” adaptive filters, which has
been defined in Eq.(7) in Sect.2 are rare. Methods for
estimating optimum tap assignment for a given number
of total taps may not be easy available for this particular
structure of the IIR filter.

In this paper, effects of order assignment in the sep-
arate realization of the IIR adaptive filter is investigated.
Over and under estimation for the filter order are also
discussed. Furthermore, efficiency of the equation error
to evaluate the performance of the filter is investigated.
Finally, the stability problem in a process of finding
the optimum order assignment is discussed. Recursive
least square (RLS) algorithm is employed. The system
identification problem is taken into account.

2. Differences among IIR Adaptive Filters

To define differences among IIR adaptive filters[6] we
write input-output relation of an unknown system as

d(n) = ATd(n — 1) + BTu(n) + em(n) (la)
= ®'X(n) + epn(n) (1b)

where A and B are coefficient vectors and d(n — 1)
and u(n) are desired and input sample vectors, respec-
tively. T is a transposed operation. e,,(n) is measure-
ment noise. ® = [B, A], X(n) = [u(n),d(n — 1)]. The
vectors B, A, u(n) and d(n — 1) are defined as

B = [bg, ..., bar_1]T (2a)
A =ay,....,an 1]" (2b)
u(n) = [u(n),..;u(n — M+ 1)]% (2¢)
d(n—1) =[d(n—1),...,d(n — N +1)]¥ (2d)
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Since the white unmeasurable e, (n) in Eq. (1) is un-
predictable, the above can be further modeled by

d(n) = ATd(n — 1) + B u(n) (3a)
— $TX(n) (3b)
where A and B are estimated parameters. Now define
prediction error,
e(n) = d(n) - d(n) 4)
The above equation can be rewritten using Egs. (1b)
and (3b) as
e(n) = [@ — #]"X(n) (5)
= ®TX(n) + em(n) (6)
Tilde and hat have been used to denote the error of
the estimated entities and estimation itself, respectively.
Now, the contents of the information vector X(n), in
prediction problem as expressed in the above equation,
is important since they define the IIR adaptive filter clas-

sification. In ITIR adaptive filters, X(n) may be defined
as any of the following equations

X(n) = [u(n),d(n —1)] (M

X(n) = [u(n),d(n - 1)] ®)
or even [8],{9]

X(n) = [a(n),d(n - 1)] 9)

It is important to note that Eqs. (7) — (9) express differ-
ences among the IIR adaptive filters. The prediction er-
ror e(n) as defined in Eq. (6), is called “equation error”
and the mean-square-equation-error is a quadratic func-
tion with a single global minimum{10]. Please note
that this separate form of IIR filter, may also be ex-
pressed as a two-input, d(n — 1) and u(n), single output
d(n) model [6], where numerator and denominator co-
efficients are adjusted separately[11]. Now, the second
case as defined in Eq. (8) corresponds to an “output er-
ror” method, which also may be stated as a direct form
of TIR structure. It can be shown that the prediction
error in this case[6]

e(n)=[1- A]_l[iTX(n) + em(n)] (10)

It can be observed from Eq. (10) that the prediction er-
ror sequence e(n), in this case, possesses poles and is
an AR filtered version of the “equation error”. It is to
be noted here that the poles of this AR transfer func-
tion, [1— A]™~1 are those of the actual process, which we
want to estimate. Since mean square of the output er-
ror, is not a quadratic function of the parameters to be
adjusted, it may have multiple local minima[10]. The
third case is a special form that corresponds to Eq. (9).
The information vector X (n) in this case contains a term
i(n), as shown in Eq.(9), which itself is an estimated
parameter. Examples of this kind are found in speech
processing applications e.g.,[8],[9].

The evaluation of equation error is different from
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the output error. Namely, it is indirect error evalua-
tion. It has been shown that these two forms of er-
ror are equivalent in the sense that any of them can be
used as the minimization criterion [12]. However, in the
Sect. 3.2, it will be shown that the equation error does
not represent exactly transfer function error. So, the
equation error must be evaluated in comparison with
the transfer function or the impulse response error.

3. Separate Realization of IIR Adaptive Filter
3.1 Network Structure

A block diagram of the separate realization of the IIR
adaptive filter is shown in Fig. 1. H(z) indicates a trans-
fer function of the unknown system to be identified.
AF,(z) and AFy(z) construct the denominator and nu-
merator, respectively. z(n) is noise to be canceled, for
instance. The output of H(z), denoted d(n), is used
as a desired response. It may be pointed out here that
[1—AFa(z)] ! is copied to an all pole filter which is in
cascade with AFb(z), to get the output of the adaptive
filter; however, this is not shown in the block diagram.

3.2 Equation Error Evaluation

The error given by Eq.(4) is the equation error. The
z-transform of this error is derived in the following.
Letting D(z), X (2), Yo(2), Ys(2), Y(2), and E(z) be
z-transform of d(n), z(n), yo(n), ys(n), y(n), and e(n),
respectively, we obtain

D(z) = H(2)X (2) (11a)
Yo(2) = AFu(2)D(2) (11b)
Yy(2) = AFy(2) X (2) (11¢)
Y(z) = Ya(2) + Yi(2) (11d)
E(z)=D(z) - Y(z) (11e)

By eliminating D(z), Y,(z) and Y,(2), E(z) can be
expressed as

E(2) = [H(2) — H(:)AFy(2) — ARy(2)]X(2) (12)

The ideal solution can be obtained by setting the inside
of the bracket to be zero.

e(n)

x(n) . [ AFb I
x(n) ‘_I_I Yp(n)

Fig. 1  Separate realization of IIR adaptive filter.
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H(z)— H(2)AF,(2) — AFp(2) =0 (13)

From this condition, the following relation is obtained.
. AFb(Z)

H(z) = 1= AF, () (14)

On the other hand, if the condition expressed in
Eq. (13) cannot be satisfied, H(z) should include an er-
ror term AH(z) in Eq. (12), and their relation is rewrit-
ten as

_ AF(2)+ E(2)/X(2)

H(z)+ AH(z) = T AF, () (15)
AH@%:§¥%%§% (16)

The above equation shows that the equation error F(z)
is weighted by X(z) and 1 — AF,(z) in the transfer
function error criterion. Equation (16) indicates that
not the equation error but a filtered version of it can
exactly represent the transfer function error[15]. Possi-
bility of finding the global minimum solution by using
the equation error will be discussed in the later section.

3.3 Adaptive Filter Algorithm

Since the ITR adaptive filter discussed here has the sepa-
rated numerator and denominator, the conventional al-
gorithms for FIR adaptive filters can be used [5],[11],
[14]. Recursive Least Square (RLS) algorithm[16] is
used.

3.4 Stability Problem

Though the equation error does not possess any pole,
the equation error adaptive filter itself may suffer from
stability problem [6],[ 10],[13],[ 14]. However, the adap-
tation is not affected by unstable poles of the adaptive
filter, which are given by 1/(1 — AF,(z)). So, adapta-
tion can be continued even though some poles of the
adaptive filter itself locate outside the unit circle, and
finally the stable optimum solution may be found. This
will be further discussed in Sect. 5.3.

4. Estimation and Assignment of Filter Order
4.1 Order Assignment

Filter order estimation is important for the system iden-
tification problem. Especially, when a sum of the nu-
merator and denominator orders is limited in the adap-
tive filter, the optimum order assignment becomes very
important from the relation given by Egs. (14) and (16).
Error property caused by under estimation of the or-
der in the IIR adaptive filters is different from that of
the FIR adaptive filters as shown in Eq.(16). The es-
timation error affects the filter performance with some
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weighting functions. High-Q filters will cause large er-
ror. In other words, the performance of the IIR filters
is more sensitive to the order estimation than the FIR
filters.

4.2 Error Criteria

The equation error is evaluated in this paper using the
following relation.

no+K—1

= > le)P an

i=ng

It is assumed that at n = ng the adaptation already
converges. K is the number of error sample taken into
account.

As discussed in Sect. 3.2, E,, does not directly cor-
respond to the transfer function error. Therefore, in
simulation, efficiency of the equation error is evaluated
by comparing the following error criteria.

h—-h 2
Eimp = 10l0g10ﬂ]|Tﬁ2F—H— (18)
h = [1(0), A(1), ..., (L — 1)]" (19)

har = [har(0), har(1), ... hap(L — 1)]F (20)

|l . || indicates Euclidean norm. hg(n) and hap(n) are
impulse responses of H(z) and Hap(z) shown below,
respectively.

Har(z) = % (2D

5. Simulation and Discussions
5.1 Unknown System and Input Signal

The following transfer function is used for the unknown
system.

1+ 1.5271 4 0.90252~2
H(z) = 0
D(z) =[1—092 1408272 —-0.7273 +062*
— 0527 4+04275-032"740.2278
+0.1277]

(22)

The impulse and the amplitude responses are shown in
Figs. 2 (b) and (c), respectively. The sampling frequency
is set to 2 Hz. The input signal is a white noise. The
RLS algorithm with A = 0.95 is used.

5.2 Effects of Order Assignment

From Eq.(22), it can be noted that the total order of
the unknown system is 11th order, and the total number
of coefficients is 13. By limiting these number to be in-
variant, effects of order assignment on the error criteria
given in Sect. 4.2 are investigated.
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Fig. 2 Characteristics of unknown system.
Table 1  Error criteria for different tap ratios.
N/D | Beqg x10~=* | FEimp (dB)
12/1 31.82 —15.23
11/2 52.03 —14.47
10/3 52.0 —10.46
9/4 41.0 —8.97
8/5 33.0 -9.05
7/6 33.0 -9.13
6/7 32.0 -11.57
5/8 27.0 UNSTABLE
4/9 1.50 —33.02
3/10 0.87 —43.86
2/11 30.0 UNSTABLE
1/12 2.95 —21.73

Table 1 shows the simulation results. N/D means
the ratio of the numbers of numerator and denominator
coefficients. Adaptation was carried out independently
for each ratio starting from zero initial coefficient values.
Figure 3 shows results of the optimum ratio, obtained
from Table 1, i.e., 3/10. Adaptive filter coeflicients after
500 iterations, frequency and impulse responses calcu-
lated from those coefficients and the equation error are
shown in Fig. 3 (c)(d), (a)(b) and (e) respectively. Also
Fig. 3 () shows the pole-zero locations of the adaptive
filter after 500 iterations. Solid and dotted lines corre-
spond to the adaptive filter characteristics and the corre-
sponding characteristics of the unknown system, respec-
tively. The result shown in this figure indicates that a
very satisfactory system identification is possible using
an optimum N/D ratio.

From Tablel, it can be noted that the equation
error E,, can monotonously decrease toward the op-
timum assignment. Around the optimum assignment,
F., is approximately proportional to Ej,,,. From these
results, it can be concluded that the equation error can
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Fig. 3  Simulation results for 3/10 assignment. In (a) through
(d), solid and dotted lines represent adaptive and unknown sys-
tem respectively.

Table 2 Error criteria for different tap ratios with —20dB

measurement noise and 100 data samples.
N/D Eeq Eimp (dB)
10/3 | 0.0260 —11.14
9/4 0.0351 -9.87
8/5 0.0334 —9.25
7/6 0.0395 —9.43
6/7 0.0348 —11.10
5/8 0.0185 —14.28
4/9 0.0037 —27.23
3/10 | 0.0018 —33.18
2/11 | 0.0153 | UNSTABLE

be used in searching for the optimum order assignment.

Table 2 shows a more severe case. In this case,
the uncorrelated white measurement noise with a vari-
ance of —20dB is added at the unknown system output.
Furthermore, number of data was limited to only 100
samples. In this case, the optimum tap assignment can
be still found.

5.3 Stability Analysis

In Table 1, the impulse response of the adaptive filter
diverges in the cases of N/D=5/8 and 2/11. This



HUQ et al: OPTIMUM ORDER ASSIGNMENT ON NUMERATOR AND DENOMINATOR

Table 3  Stability analysis in adaptation process. Ratio N/D
is changed from 5/8 to 2/11.

N/D 58 4/9 3/10 2111

Eeq  |27.0x70 [3.26x78 |osoxid  |a.8axid

Eimp |unstable tLE S0 | o [ oy oe s

Iteration |0 ~ 500 |501 ~ 1000|1001 ~ 1500 | 1501 ~ 2000

Table 4  Error criteria for different number of taps.

N/D | Eoq X107 | Eimp (dB)
2/8 32000.0 —23.70
2/10 | 330000 ~29.26
3/9 5269.8 ~29.98
3/10 875.0 ~43.86
5/12 141.0 —53.46
7/14 6.76 ~70.82
9/16 0.04 —92.54
11/18 1.69 —75.54

problem is further investigated in the following con-
dition. The ratio N/D initially starts from 5/8, and is
successively changed every 500 iterations toward 2/11.
500 iterations has been determined in order to guaran-
tee convergence by experience. The adjusted coefficients
for N/D = n/m are used as the initial guess for N/D
= (n—1)/(m + 1). Simulation results are shown in
Table 3.

The resulting error criteria are a little different from
those in Table 1, due to the different initial guess. The
filter falls into the unstable state in the ratio of 5/8.
However, it can recover from the unstable state in the
following adaptation using the ratios toward the opti-
mum. This property of the equation error can guarantee
the possibility to find the optimum order assignment in
stable state.

On the contrary, the direct form, which uses the
output error criterion, can not continue adaptation af-
ter the IIR filter falls into unstable state. Because the
error diverges and hence can not be used for adaptation.

5.4 Effects of Increasing Filter Order

Another point to be optimized is the total order of the
adaptive filter. In other words, the total number of the
filter coefficients, that is N-+D. In this section, effects of
increasing N+4-D while maintaining the ratio N/D ap-
proximately invariant are investigated. Simulation re-
sults are shown in Table 4.

Obviously, by increasing N 4D, the error criteria can be
decreased. However, this improvement is saturated up
to around —75dB in E;;,,,. The reason can be explained
as follows: High order transfer functions include redun-
dant poles and zeros. In the adaptation process, they
could be canceled to each other.
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5.5 Convergence Rate and Tracking Speed

Convergence and tracking speeds depend on how to find
an optimum order assignment in real time. An auto-
matic finding method has not been proposed in this
paper. However, it can be said that it is possible to find
the optimum order assignment based on the equation
error. The optimum solution can be found by changing
the the order assignment so as to minimize the equation
error starting from some order ratio. Furthermore, this
method can track a time varying the unknown system.

6. Conclusions

The performance of the separate realization of the IIR
adaptive filters, which is adjusted by using the equation
error, has been discussed based on the order assignment.
Once the total order of the adaptive filter is fixed, the
performance is very sensitive to the order assignment.
Around the optimum order assignment, the equation
error is approximately proportional to the transfer func-
tion error. The adaptive filter can recover from the un-
stable state as its order assignment approaches toward
the optimum. Therefore, it is possible to find the opti-
mum order assignment using the equation error.
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