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A Combined Fast Adaptive Filter Algorithm with
an Automatic Switching Method

SUMMARY  This paper proposes a new combined fast algo-
rithm for transversal adaptive filters. The fast transversal filter
(FTF) algorithm and the normalized LMS (NLMS) are com-
bined in the following way. In the initialization period, the
FTF is used to obtain fast convergence. After converging, the
algorithm is switched to the NLMS algorithm because the FTF
cannot be used for a long time due to its numerical instabil-
ity. Nonstationary environment, that is, time varying unknown
system for instance, is classified into three categories: slow time
varying, fast time varying and sudden time varying systems. The
NLMS algorithm is applied to the first situation. In the latter
two cases, however, the NLMS algorithm cannot provide a good
performance. So, the FTF algorithm is selected. Switching be-
tween the two algorithms is automatically controlled by using
the difference of the MSE sequence. If the difference exceeds a
threshold, then the FTF is selected. Other wise, the NLMS is
selected. Compared with the RLS algorithm, the proposed com-
bined algorithm needs less computation, while maintaining the
same performance. Furthermore, compared with the FTF algo-
rithm, it provides numerically stable operation.

key words: adaptive filters, fast RLS, normalized LMS, tracking
speed, stability

1. Introduction

The LMS algorithm is highly popular for its simplicity.
A main drawback of the LMS algorithm, however, is
its low convergence rate. In order to solve this problem
with a reasonable computational load, various fast RLS
algorithms have been proposed [1]. Unfortunately, the
fast RLS algorithms suffer from the numerical instabil-
ity problem. Much research has been done to improve
these two classes of adaptive filter algorithms.

In the class of the LMS algorithm, for example,
varying the step size according to the sign of the gra-
dient or the moving average of the misadjustment level
is proposed in [2] and [3] to improve the convergence
rate. Conjugate gradient technique is another method
used to speed up convergence [4]. These efforts can im-
prove the convergence rate to some extent, but are still
uncomparable to that of the RLS algorithm.

On the other hand, various rescue methods have
been proposed to solve the numerical instability prob-
lem in the fast RLS algorithms. They include reset-
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ting the internal parameters just before some rescue
variables become negative [5], reintroducing some er-
ror feedbacks into the fast RLS algorithms [6], and us-
ing alternately two fast RLS algorithms in parallel [7].
These rescue methods can elongate the stable implemen-
tation of the fast RLS algorithms. However, completely
stable implementation can not be obtained.

Another advantage of the RLS algorithm over the
LMS algorithm seems to be the high tracking speed for
a time varying system. Bershed et al. have shown, how-
ever, that in some applications, the LMS algorithm has
a superior tracking performance [8]. Eleftherion et al.
have also discussed the tracking performances of the
RLS and the LMS algorithms. They gave a bound-
ary condition based on the weight lag error. Under
this boundary condition, there is no advantage in using
the more complex RLS algorithm [9]. In this paper,
a boundary condition based on both the weight noise
and the weight lag errors is introduced. It can be easily
shown that the tracking performance of the NLMS al-
gorithm is superior to that of the RLS algorithm under
certain conditions.

In order to best utilize the advantages of the fast
RLS and the NLMS algorithms for achieving compu-
tational simplicity, numerical stability, fast convergence
rate, and fast tracking, we propose a new method in
which the NLMS and the FTF algorithms are com-
bined. An automatic switching method between the two
algorithms is also proposed. The proposed method is
investigated in stationary and nonstationary environ-
ments and compared with the NLMS and the RLS al-
gorithms.

This paper is organized as follows. In Sect.2, the
performances of the fast RLS and the NLMS algorithms
are discussed. A modified NLMS is proposed to reduce
misadjustment. In Sect. 3, we first describe the combi-
nation method of the two algorithms. Then, we com-
pare the proposed method with the periodic restarting
method. Finally, we discuss the boundary condition of
tracking ability between the NLMS and the RLS algo-
rithms. Description of the simulation and discussions
of the results are given in Sect. 4.
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2. Fast RLS and the Normalized LMS

2.1 Performance of the Fast RLS Algorithm

There are several kinds of fast RLS algorithms. A rep-

resentative one is the FTF algorithm [5]. An important

feature of this algorithm is that it can provide not only
an exact solution to the RLS problem but also a com-
putational cost that increases linearly with the number
of taps contained in the adaptive filter, as in the LMS
algorithm.

However, the numerical instability problem en-
countered in the FTF algorithm greatly impairs its prac-
tical applications. The numerical instability caused in
transient and in steady-state has been discussed in sev-
eral papers [5],[6]. :

In a transient period, such as initialization an
reinitialization, the instability is caused mainly by
finite-precision and large-order effects [5]. An effective
method to overcome this problem is to introduce a so-
called soft constraint initialization. That is to suppose
that the tap input u(—M) is equal to (A\~*§)1/2 rather
than zero. Like in the RLS algorithm, using the soft
constraint initialization will introduce a bias into the
estimate of w(n). This bias approches zero when the
iteration n increases. Appropriate choice of the value
of § can stabilize the FTF algorithm during the tran-
sient period, and introduce a slightly suboptimal RLS
solution. Stability during the transient period is very
important, since initialization and reinitialization are
repeatedly used in the proposed algorithm.

In a steady-state period, the instability is caused
mainly by the accumulation of roundoff errors due to
finite-precision effects. The structure of the FTF algo-
rithm further increases the trend of this accumulation,
since all the redundant information contained in the
RLS algorithm is removed. By reintroducing some er-
ror feedbacks into the FTF algorithm, its stability per-
formance is improved [6]. However, the stability can be
maintained only when certain conditions are satisfied.
In practical applications, the rescue is still essential for
overcoming the instability problem of the FTF algo-
rithm.

Another serious problem encountered in the FTF is
its tracking ability. The FTF algorithm is very sensitive
to the variation of the forgetting factor A. In a nonsta-
tionary environment, where A should be less than unity
in order to obtain the tracking ability, we find that the
FTF algorithm has an increased instability. In order to
overcome this problem, use of a gear-shifting method
instead of changing the forgetting factor is proposed
in [5]. This is to redefine time n = 0 as the time at
which the gear-shifting is to occur and then to weight
the present tap weights w(n) through an appropriate
choice of u. Since p = A~M§, this method is in fact
the same as initialization with a soft constraint condi-
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tion. In other words, the tracking ability is obtained by
discarding all previous tap inputs. However, in a non-
stationary environment, where continuous change of the
tracking is necessary, this method is inefficient. Many
questions remain open regarding the improvement of
the tracking property of the fast RLS algorithms.

2.2 Performance of the Normalized LMS

The NLMS algorithm can be written as [1]

a(n) = d(n) — W (n)u(n) (1)
W+ 1) = W(n) + i (m)u(n)o (m), @)

where finims(n) = i/|la(n)]|?. |lu(n)|? is the squared
Euclidean norm of the tap-input vector u(n), and  is
a positive real scaling factor.

The main advantage of the NLMS over the LMS is
twofold. Firstly, when & = 1 the NLMS algorithm can
provide the fastest convergence rate among the scalar
step sized LMS algorithms [1]. Secondly, pnims(n) is a
variable step size, which equals the reciprocal of the in-
stantaneous estimate of the input power. So the NLMS
algorithm automatically satisfies the stability condition
and does not require the prior knowledge of the input
power.

However, the problem caused by using the NLMS
algorithm is its large misadjustment. If the NLMS algo-
rithm is implemented in a stationary environment and
i =1, the misadjustment can reach 100%. This can be
explained by using the equation developed in [1]. The
misadjustment can be calculated as

M
,U'Z)\i
M i=1

T M
2= N
=1

(3)

w®) = (B n)]) =

M
where Z)‘i =
i=1

Eltr(u(n)u® (n))] = E[|u(n)||’]. The statastical per-
formance of pinims(n) is

1

= Elpinims(n)] = Flu(m)[E 4)

So we get the misadjustment of the NLMS algorithm
M
D!
i=1"
=
2 n3
i=1

Choosing i < 1 can reduce the misadjustment, but at
the same time it reduces the convergence rate.

M~ = 100% (5)
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In order to overcome this problem, we introduce a
modified step size into the NLMS algorithm. Use of the
modified step size can produce a fast convergence rate
when the MSE is large, and obtain a small misadjust-
ment when the MSE is small.

The modified step size can be written as follows

1
@)L+ admin/a2(n))

p(n) (6)

where a(n) is the error calculated in Eq.(1), J,;, is the
estimate of the minimum MSE, a is a positive constant.
Appropriate choice of a can provide a good trade-off
between fast tracking and small misadjustment.

The performance of the modified step size is fol-
lows. When o?(n) is large, aJp,/a?(n) << 1 and
p(n) =~ 1/llu(n)||*. Thus a fast convergence rate is ob-
tained. When o?(n) approaches J,,;,, we have

1
() I2(1 + admin/ Jmin)
1
TNy, @)
[u(n) (1 + a)
and the misadjustment is therefore reduced to about

100
1a /o

p(n) ~

3. Combination of the FTF and the NLMS

The main idea, on which the proposed algorithm is
based, is that whenever the tap weights have a large de-
viation from their optimum values and a large error re-
sults, the FTF algorithm is used to turn the tap weights
quickly back to the close proximity of their optimum
values. Since the FTF can provide the least square solu-
tion like the RLS algorithm, usually only 2M - 3M iter-
ations is needed to make the tap weights closely enough
to the optimum values . After that, the NLMS algorithm
is used. Thus, fast convergence rate can be obtained and
numerical instability avoided. When the unknown sys-
tem varies slowly with time, we usually need not use
the FTF algorithm, since the NLMS algorithm is ca-
pable of tracking slow time varying system. When the
unknown system varies fast with time, fast tracking can
be obtained by periodically implementing the FTF al-
gorithm.

3.1 Combination Method

Figure 1 shows the timing of operations in the proposed
algorithm. We let the FTF algorithm always perform
in the transient period (period 1, 3, 5), and the NLMS
algorithm in the steady-state period (period 2, 4). The
interval of implementing the FTF algorithm is fixed (for
example 3M iterations) in order to guarantee the stabil-
ity. Automatically switching from one algorithm to the
other is determined by a threshold ©. © is a prescribed
value which can be defined as

Period 1 Period 2 Period 3 Period 4 Period 5
Conlinuosly Discontinuosly Continuosly Continuosly
slow changes sudden changes | slow changes fast changes
(Initialization) (Reinitialization) (Reinitialization}
3M 3M 3M 3M
NLMS NLMS
FTF FTF FTF | FTF
0 Ne n Ny Ng n
Fig. 1  Timing of operations in the proposed method.
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Fig. 2 Calculation of the slope of the MSE.
1
0 = 5K L (8)

where K is a positive constant which represents the slope
or the speed of variation of the MSE as shown in Fig. 2.
L is the number of samples used for averaging the MSE.

If the difference of the MSE AJ,.(n) is greater than
the threshold ©, the FTF algorithm is used, otherwise,
the NLMS algorithm is used. From Fig. 2, we can write
AJ.(n) as

AJ,(n) = ]AAJ(n)| _ % <|J1(n)A— Jz(n)|> ©)

']min Jmin

>, k) (10)

(i) (11)

i=n—2L+1

where 'jmin is the estimate of the minimum MSE.

The reason for adding Jrnan into the calculation of
AJy(n) is twofold. Firstly, AJ(n) caused by both the
weight noise and the weight lag can be considered as an
increment of the misadjustment AM from Jrmin. FoOT ex-
ample, suppose AJ(n) = 0.005. If J,,;, = 0.001, then
AM = 500%. So the FTF algorithm should be used, in
order to obtain fast tracking. However, if Jmin = 0.01,
then AM = 50%. In this case, the NLMS algorithm
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should be used, in order to obtain a small final mis-
adjustment. Secondly, we know that the performance
of the FTF algorithm is closely related to Jyin. If
Jmin = 0, the FTF achieves its best performance. When
Jmin increases, however, the superior convergence and
tracking performance of the FTF over the NLMS be-
comes lost [1]. So when the combined algorithm is im-
plemented in a nonstationary environment, the FTF al-
gorithm should be used less frequently for a large Jin.
Apparently, Eq.(9) satisfies these requirements [10].

In practical situations, Eqs.(8) and (9) can be writ-
ten in another simple equivalent form

0 = KJpinL (12)
AJn(n) = |Ji(n) — Ja2(n)] (13)

In order to obtain fast tracking when the unknown
system varies fast with time and to avoid the possible
instability, the reinitialization of the FTF algorithm is
periodically implemented in period 5. One may think
that the discontinuities caused by the reinitialization
will produce an unbearable large MSE. This is true
if one chooses the reinitialization parameters 6§ and A
improperly. There are two factors that can cause dis-
continuities. One is the transient produced by removing
the augmentation of a series of zero tap inputs before
reinitialization. The transient makes the desired signal
d(n) undergo about M iterations of transient period, in
which d(n) do not contain the correct information of
the unknown system. This problem can be solved by
choosing A < 1 to avoid accumulating incorrect data.
The other factor is the input correlation matrix being
nearly singular when the reinitialization parameter &
is too small. By increasing &, the possible singular-
ity of the correlation matrix can be avoided. The bias
produced by a large § can be suppressed by reducing
A. Generally speaking, by properly choosing § and A,
we can obtain a tracking performance like that of the
RLS algorithm without introducing noticeable discon-
tinuities.

Figure 3 shows the flow chart of the combination
of the two algorithms. We can see that the difference
between the FTF and the NLMS algorithms is the cal-
culation of the Kalman gain vector kps(n). In the FTF
algorithm, kps(n) is calculated by using the relation-
ship between forward and backward prediction instead
of complex matrix manipulation. We note that all the
information contained in the inverse input correlation
matrix ®~1(n) is also contained in ky(n). So kus(n)
is the true Kalman gain. In the NLMS algorithm, how-
ever, ks (n) is replaced by a simple scalar step size mul-
tiplied by the tap-input vector. Apparently, kys(n) is
only an approximation of the true Kalman gain. Ex-
periments show that the nearer the bottom of the error
surface, the better the approximation.

The proposed algorithm has several important fea-
tures. First, we note that the implementation of the
FTF algorithm is within about 3M iterations. Keeping
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Flow chart of the proposed combination method.

the FTF algorithm stable within this interval is rela-
tively simple. Thus, some important advantages of the
FTF over the NLMS, such as fast convergence rate and
fast tracking, can be utilized. Second, the gear-shifting
property can be realized in the proposed algorithm, as a
small X\ can be used in the FTF to provide fast tracking
in a transient and a small step size can be used in the
NLMS to provide a small misadjustment in a steady-
state operation.

3.2 Comparison Between the Proposed Method and
the Periodic Restarting Method

The periodic restarting method, which was introduced
in [9] to overcome the instability problem of the FTF
algorithm, also uses the combination of the FTF and
the LMS algorithms. The basic idea, however, is en-
tirely different from the proposed method.

Figure 4 shows the timing of operations in the pe-
riodic restarting method. Comparing with Fig. 1, we
can see that the use of the two algorithms is inversed.
The periodic restarting method takes the LMS as an
auxiliary algorithm to provide an estimate of the de-
sired response when the FTF algorithm is reinitialized.
In contrast, the proposed method takes the FTF as an
auxiliary algorithm to provide the least square solu-
tion, when the characteristics of the unknown system
are suddenly changed or varying fast with time. The
periodic restarting method may result in a significant
reduction in tracking speed [1]. This is because the
LMS algorithm used in the period restarting method
can be implemented away from the bottom of the er-
ror surface if the jumping parameters happen to appear
during reinitialization of the FTF algorithm. Appar-
ently, the LMS algorithm cannot give a good perfor-
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Reinitialization Reinitialization
of FTF of FTF
1M~1.5M 1M~1.5M
LMS FTF LMS FTF
ng 2n, n
Fig. 4 Timing of operations in the periodic restarting method.

mance during this period. Since the variation of the
unknown system is unpredictable and the reinitializa-
tion is periodical, the tracking speed can be affected
to a large extent. However, this problem does not ex-
ist in the proposed method, since the NLMS algorithm
is always implemented around the bottom of the error
surface where it gives a good performance.

3.3 Boundary of Tracking Ability Between the NLMS
and the RLS Algorithms

Experiments show that the NLMS algorithm can per-
form well when the parameters of the unknown system
vary slowly with time. However, when the parameters
of the unknown system vary fast and continuously, the
limitation of the tracking ability of the NLMS algo-
rithm becomes apparent. Eleftheriou et al. have given
a boundary to evaluate the tracking ability between the
RLS and the LMS [9]. When these two algorithms are
implemented in a nonstationary environment, the total
extra MSE introduced in the RLS algorithm can be cal-
culated according to

Jiot = Jest + Jlag
1—-A 1 ‘
= —MJpin + - tr(R)o. 14
T+ toa R (14)
where J.5 is the extra MSE due to the weight noise
and Ji,, is the extra MSE due to the weight lag. o2
represents the variance of the nonstationarity.
The total extra MSE introduced in the LMS algo-
rithm is®

prR) et Mo (5

Jo:Jes ']a = 5 LD
tot ¢+ Jiag 2 — wir(R) 20

If the NLMS algorithm is used, Eq.(15) can be modified
by replacing p with 1/¢r(R). The total extra MSE then
becomes

1
Jiot = Jmin + EMtr(R)crfU (16)

The boundary condition defined in [9] can be written
as

Jlag(LM3)

Bla =
7 Jiag(RLS)

(17)

Since the NLMS can provide the fastest convergence
rate among the scalar step sized LMS, we have

Jlag(NLMS)

Blag = =(1-\M (18)

Jiag(RLS)
Figure 5 (a) shows the boundary condition of Eq.(18).
Apparently, when Bj,, < 1, the NLMS algorithm gives
no inferior tracking performance to that of the RLS
algorithm.

However, in evaluating the tracking performance
of an adaptive filter algorithm, one should consider not
only the error caused by the weight lag, but also the
error caused by the weight noise. If both of errors are
considered, the boundary condition becomes

B.., Jiot(NLMS)

Jtot(RLS)

1 2
= 2 w (19)

Supposing tr(R) = Mo—u, and deviding the denomina-
tor and the numerator in Eq.(19) by J,;,, we have
1+1 .7\/[2pcr2
Biot = (20)
1—1—)\M + 3= ,\)M

where p = SNR = 02 /J,nin is the signal-to-noise ratio.

At first glance, the boundary of Eq.(20) is more
stringent to the NLMS than that of Eq.(18), since if Jj4,4
(NLMS) and Jjqg (RLS) are equal, Jeq: of the NLMS is
always greater than that of the RLS. However, it should
be noted that J;,; of the RLS is A dependent. As a re-
sult, we can show that under certain conditions, the
tracking performance of the NLMS is better than that
of the RLS. For example, if 02 = 1075 M = 50, and
p = 103, the optimum forgetting factor calculated from
Eq.(14) is Agp: = 0.968. Substituting these values into
Eq.(20), we can obtain the boundary of Eq.(20). The
result is shown in Fig. 5 (b). From the figure, we sce that
the region of A, in which the RLS has a smaller total
extra MSE than that of the NLMS is quite limited. In
practical situations, ¢2, and p are variable parameters.
For example, if p is reduced to 102, the optimum forget-
ting factor A,p,; should be chosen to be 0.98 as shown
in Fig.5(c). If A keeps its previous optimum value of
0.968, the NLMS has almost the same total extra MSE
as the RLS does. Furthermore, if the modified NLMS,
which can further reduce the weight noise error, is used,
the total extra MSE of the NLMS is always smaller than

T The original form used in [11] is

Mo2
2p

Jtot = %tr(R)szn +

This is to suppose u << 1 so that 2 — utr(R) = 2. However,
the more accurate form of weight noise error is defined by
Eq.(3), which results in the present form.
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on the total extra MSE.

that of the RLS, as shown by the dotted line in Fig. 5 (c).
The above analysis has been verified by simulation and
the simulation results will be presented in Sect. 4.

However, when the unknown system varies fast
with time, the nonstationarity parameter o2 becomes
large, which makes the lag error the dominant term in
the total MSE and thus B, ~ Bj,,. As can be seen
in Fig. 4(d), the tracking ability of the RLS is superior,
especially when the number of tap weights increases and
the eigenvalue of the input correlation matrix is widely
spread. The proposed method periodically implements
the FTF algorithm in such a case, which results in the
tracking performance being almost the same as that of
the RLS algorithm. We will demonstrate this by several
simulations in Sect. 4.

4, Simulation

In this section, we will carry out some simulations on
system identification to show the efficiency of the pro-
posed method.

The simulations are implemented in a stationary
and a nonstationary environment. In the stationary en-
vironment, we suppose that the unknown system 1s fixed,
with some jumping parameters. In the nonstationary

Total MSE

Total MSE
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Measurement noise
va(n)
+

Unknown
System

vi(n,
o Second-order
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Random noise
generator

Adaptive
transversal filter

d

Fig. 6 Block diagram of system identification.

environment, we study the unknown system that has
time varying parameters.

4.1 Description of the Simulation

The block diagram of system identification is shown in
Fig.6. The unknown system is supposed to be a second-
order AR model with adjustable parameters. The trans-
fer function of the unknown system can be written as

bo

H =
(2) 14+ a1z 4+ agz2

(21)
= l,a; = —2rcos(#),as = r?. In the sim-

where by 9
we suppose that » = 0.85 is fixed, and 8 is

ulations,
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varying.

The zero-mean white noise vy (n) is put through an-
other second-order AR model to produce colored tap
input u(n) with a variance of o2 = 1. The eigenvalue
spread can be adjusted by changing the coefficients of
the AR model. vy(n) represents the measurement noise
with zero-mean and variance o2, = 0.001. Each experi-
ment is repeated 100 times and each time an independent
realization of the process {v1(n)} and {vy(n)} is used.
The number of tap weights is set to 50 in all simulations.
The computation precision is 32-bit floating-point arith-
metic.

In the proposed method, switching from the NLMS
to the FTF is determined by the threshold. Choice of
the value of the threshold depends mainly on the ap-
plication. In all the simulations that follow, we choose
L =10and K = 20 in Eq.(12) and Jys, = 02, = 0.001.
So the threshold © = 0.2. The implementation of the
FTF algorithm is fixed to 3M iterations.

42 Simulation Results and Discussions

Simulation 1: Fixed Unknown System with Jumping
Parameters

In this simulation, we study the convergence per-
formance of the proposed algorithm and compare the
result with those of the NLMS and the RLS algorithms.

The change of the phase of pole in the unknown
system is shown in Fig.7. In the first period(n < n;),
¢ = % is used. @ is changed to 7 in the second
period(n > n,).

The learning curves obtained by three algorithms
are shown in Fig.8(a). In Fig. 8 (b), we show the prob-
ability, which is the number of times the FTF is used
in the 100 independent implementations. If the FTF
is used in every implementation, the probability is 1.
So Fig.8(b) clearly shows the interval of implementa-
tion of the two algorithms. In the proposed method,
the FTF algorithm is implemented in the first 3M sam-
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Fig. 7 Change of the phase of pole in the unknown system.

ples, and when the unknown system suddenly changes
at a jumping point n;, the algorithm is automatically
switched from the NLMS to the FTF for another 3M
implementations.

From Fig. 8, we can see that the performance of the
NLMS is unsatisfactory, especially when the eigenvalues
are widely disparate. By combining the NLMS and
the FTF, the performance is greatly improved, which
results in the convergence performance being the same
as that of the RLS in the initialization period. In the
reinitialization period, however, the convergence of the
proposed method is faster than the RLS because fewer
previous tap inputs are used. Furthermore, by using the
modified step size of the NLMS, the proposed method
can obtain a smaller misadjustment compared with the
RLS.

Simulation 2: Slow Time-varying Unknown System

The purpose of this simulation is to compare the
tracking ability of the proposed method with that of
the RLS algorithm. The simulation is done under two
situations. One corresponds to Fig.5(b) and (c). The
effect of eigenvalue spread is considered in the other
situation.

The change of the phase of pole in the unknown
system is (see Fig.7)
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Fig. 8 Convergence performance for the unknown system with
jumping parameters.  Proposed: 7M FTF(§ = 5, )\ =
0.95)+NLMS (modified step size with ¢ = 10); RLS: § = 5,

= 0.95; NLMS: i = 1; (a) Learning curves, (b) Probability of
implementing the FTF.
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Fig. 9  Tracking performance for the unknown system with
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A = Aopt = 0.968. (a) The RLS is superior to the NLMS (a = 1),
(b) The NLMS (a = 2) is superior to the RLS.
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where 6, is a constant and its value represents the speed

of variation of the unknown system. In this simulation,
we choose 6, = 7/80.

Aopt Used in the RLS can be obtained experimen-

tally by adjusting A and by making the sum of the
N

total extra MSE, Z Jiot(n), a minimum, where n;
n=ng

is assumed to be the measurement point at which the
algorithm is converged and the unknown system be-
gins to vary with time. We choose ny; = 150 and get
Aopt = 0.968 in this simulation.

The simulation results for the first situation are
shown in Fig.9. In order to confirm the boundary
condition discussed above, we purposely let the FTF
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Fig. 10  Tracking performance for the unknown system with

slow time variant parameters. Proposed: 7M FTF(§ = 5, A =
0.968)+ NLMS (modified step size with a = 2); RLS: § =5, A =
Xopt = 0.968; NLMS: ji = 1; (a) Learning curves, (b) Probability
of implementing the FTF.

algorithm implements only in the first 3M iterations.
The results are coincided with our analysis, and show
that the NLMS algorithm has a superior tracking per-
formance under certain conditions.

The simulation results for the second situation are
shown in Fig. 10. The proposed method implements the
FTF in the first 3M iterations. In the remaining part,
the NLMS is dominantly used.

From the results, we can see that when the un-
known system is varying with time slowly, the NLMS
algorithm gives the tracking performance similar to that
of the RLS algorithm.

Simulation 3: Fast Time-varying Unknown System

This simulation is used to demonstrate the supe-
riority of the tracking ability of the proposed method
over that of the NLMS, when the unknown system varies
fast, especially under the condition of a wide eigenvalue
spread.

In this simulation, we choose 8, = 7/10 (Ayp, =
0.9). This further increases the variation of the un-
known system (see Fig.7).

The simulation results are shown in Fig. 11. When
the speed of variation of the unknown system is in-
creased, the proposed method automatically switches
from the NLMS to the FTF more frequently, giving
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Fig. 11  Tracking performance for the unknown system with

fast time variant parameters. Proposed: 7M FTF(§ = 5, A =
0.9)+ NLMS (modified step size with a = 2); RLS: § =5, A =
Aopt = 0.9; NLMS: & = 1. (a) Learning curves, (b) Probability
of implementing the FTF.

rise to a tracking performance which is almost the same
as that of the RLS, but is far better than that of the
NLMS. The discontinuities caused by periodically im-
plementing the FTF is unnoticeable.

4.3 Summary of Performance Comparisons

We summarize the performance of the proposed algo-
rithm in comparison with other adaptive filter algo-
rithms in Table 1. As shown in this table, the proposed
method demonstrates many of the highly desirable fea-
tures of an adaptive filter algorithm, including fast con-
vergence, fast tracking, small misadjustment, computa-
tional simplicity and numerical stability.

5. Conclusion

The new combined fast adaptive filter algorithm and its
automatic switching method have been proposed. From
Table 1, we can conclude that a performance of the
RLS algorithm and a computational cost of the LMS
algorithm can be achieved. Although the experiments
described in this paper belong to the field of system
identification, the proposed algorithm is expected to be
applicable to other fields as well.

Table 1  Summary.
RLS Fast RLS
Properties NLMS Proposed
A=1 A<l A=1 A<l
Convergence rate > O O O O O
Misadjustment x O A O A O
Tracking [ X O X O O
Computational load O x X O O O
Numerical stability O O O x x O
QO :Good X :Bad  /\ :Dependon A [_] :Dapendon application
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