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Performance of Single- and Multi-Reference NLMS
Noise Canceller Based on Correlation between Signal

and Noise
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SUMMARY  Single-reference and multi-reference noise can-
celler (SRNC and MRNC) performances are investigated based
on correlation between signal and noise. Exact relations between
these noise canceller performances and signal-noise correlation
have not been well discussed yet. In this paper, the above re-
lations are investigated based on theoretical, analysis and com-
puter simulation. The normalized LMS (NLMS) algorithm is
employed. Uncorrelated, partially correlated, and correlated sig-
nal and noise combinations are taken into account. Computer
simulation is carried out, using real speech, white noise, real
noise sound, sine wave signals, and their combinations. In the
SRNC problem, spectral analysis is applied to derive the can-
celler output power spectrum. From the simulation results, it is
proven that the SRNC performance is inversely proportional to
the signal-noise correlation as expected by the theoretical analy-
sis. From the simulation results, the MRNC performance is more
sensitive to the signal-noise correlation than that of SRNC. When
the signal-noise correlation is high, by using a larger number of
adaptive filtér taps, the noise is reduced more, and, the signal dis-
tortion is increased. This means the signal components included
in the noise are canceled exactly.

key words: noise canceller, normalized LMS algorithm, signal-
noise correlation, multi-reference noise canceller

1. Introduction

Usually, noise canceller problem is investigated based
on a single reference noise source. Unfortunately, in
some practical applications, several noises may be prop-
agated from different noise sources|1]-[3]. One typical
consideration of interest is that of a computer Toom,
where the speech of an operator may be corrupted by
noises coming from several computers, such as worksta-
tions, and an air-conditioner. Usually, adaptation of
the noise canceller is affected by the signal-noise corre-
lation, and does not converge to the optimum solution.
Therefore, the adaptation is stopped when the signal
is received. However, relation between the signal-noise
correlation and the noise canceller performance has not
been well discussed. Recently, authors have investigated
theoretically this relation, and have derived some math-
ematical relations[4],[5]. Based on this result, the noise
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canceller performance can be predicted to some extent.

The objective of this paper is to investigate re-
lations between the correlation of the signal and the
noise and noise cancellation in the cases of single
reference and multi-reference noise cancellers (SRNC
and MRNC). First, for the single-reference configura-
tion, different combinations are used, namely single-
frequency sine wave, multi-frequency sine wave, white
noise, environment noise and speech signal. Second,
based on these results, the multi-reference configuration
can be investigated more easily. The noise canceller cir-
cuits are described in both configurations. The adaptive
filter adjusting process is carried out by the normalized
LMS (NLMS) algorithm. =

2. Single-Reference Noise Canceller
2.1 Block Diagram

Figure 1 shows a block diagram of SRNC. The blocks
Iy and F; represent the transfer function of the noise
paths. A transversal FIR adaptive filter is employed.
Two adders are used to form the desired response d(n),
and the output of the canceller ¢(n). The inputs of
Fy and F; are generated from the same noise source.
The adaptive filter tap-weights are adjusted by using
the NLMS algorithm.
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Fig. 1 Block diagram of single reference noise canceller.
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2.2 Summary of Normalized LMS Algorithm

The NLMS algorithm is briefly summarized here[3].
Let w(n) be a tap-weight vector at iteration n.

wm—l(n)}T7 (1)

and uz(n) be the adaptive filter input vector at iteration
n,

W(’I’L) = ['ll)o(n),’U.)l(n), )

us(n) = [ua(n), ua(n), -+, ue(n — M+ 1)]",  (2)

where T' is the vector transposition. w(n) is adjusted
following

w(0)=0 3)

y(n) = w(n)u(n) )

e(n) = d(n) — y(n) &)
_ 2%

w(n+1) = W(n) + p(n)e(n)u(n) (7

where 0 denotes the null vector, 1(n) a time dependent
step-size parameter, M the adaptive filter length, o a
small positive constant, and /i a time independent step-
size.

2.3 Mathematical Analysis of SRNC Performance

Theoretical analysis is carried out by applying a well
familiar technique, spectral analysis to the noise can-
celler circuit. By doing so, mathematical formulas, all
with their proofs, are derived. The analysis is carried
out in the frequency domain, rather than in the time
domain, for simplicity reason. Of course, the results
obtained in the frequency domain can be transformed
in the time domain.

The analysis consists in deriving the relation-
ship between the canceller output power spectrum
and the signal-noise cross-spectrum due to their cross-
correlation. The adaptive filter is assumed to operate in
a stationary environment. The equations are derived in
four steps.

First step:
The adaptive filter output is given by

yim) = wrua(n
-

The canceller output is given by

e(n) = d(n) —y(n) )

where d denotes the desired response of the canceller.
Now let us form the mean square error of the canceller
output e(n),

nus(n — k). (8)
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¢*(n) = E[(d(n) — y(n))’] (10)
where F/ denotes the mathematical expectation.
€*(n)
M—1
= E[(d(n) = ), w(n)ua(n — k))’]
k=0
M-1
= E[d*(n) —2d(n) Y _ wi(n)uz(n — k)
M—1M-1 =
+ wi(n)wi(n)us(n — kjus(n — )]
k=0 1=0
(1

w(n) is independent of both uy(n) and d(n) [3]. The
linearity of the mathematical expectation yields

e’ (n)
M—-1
= B[d*(n)] =2 ) w(k)E[d(n)us(n — k)]
M—-1M-1 =
+ w(k)w(l)Eua(n — k)ua(n —1)].
k=0 =0

(12)

We assume that the adaptive filter operates in a station-
ary environment for analysis simplicity. Now we define
the following functions.

Rg4(0) = E[d*(n)] (13)
R a(k) = Eld(n)uz(n — k)] (14)
Ry oy (k — 1) = Elug(n — k)ug(n —1)]. (15)

(
where Rg 4(0) is the auto-correlation function of 4 at lag
zero, Ry, 4(k) the cross-correlation function of us and
d at lag k, Ry, 4, (k — ) the auto-correlation function
of ug at lag k — [.

Equation (12) can be rewritten using Egs.(13)
through (15) by

i

-1
Rdd QZUJ u2,
=0

M—1M—1
+ Wk)W() Ry uy (k —1). (16)
k=0 1=0
The mean square error reaches its minimum when the
gradient is null.

Equation (17) yields
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M-1

Ruz,d(k) = Z w(l)Ruz,uz (k - l)

=0

(18)

The proof of Eq.(18) is provided in Appendix A. By
taking the Fourier transform of both sides of Eq. (18)
we get

Suz,d(jw) = FA(jw)Suz,uz (w) (19)

where S, 4(jw) is the cross-power spectrum of uy and
d, F4(jw) the adaptive filter frequency response after
convergence, S, ., (w) the power spectrum of ug, and
w the angular frequency.

Second step:
We will derive the canceller output power spectrum

See(w)
e(n) = d(n) —y(n)
1
(20)
=0
The auto-correlation function of e(n) becomes

Reo(k) = Ele(n)e(n + k)] (21a)

|
£
=
=Y
2
5
£}
_l’_
o
!

= Raq(k) — w(l) Ry, (k —1).

The proof of Eq. (21c¢) is provided in Appendix B.
The Fourier transform of Eq. (21¢) gives

Se,e(w) = Sd,d(w) - FA(jw)Sdauz (jw> (22)
Now we substitute F4(jw) of Eq. (19) in Eq. (22).
Sup,d(Jw)Sa,u, (Jw
Sue(w) = Saa(w) — dé‘i“’l ?w)z Ue)  (230)
| Suy,a(iw)|?
= — e 23b
Saalw) Suz,us (w) (23b)
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Third step:
We will evaluate the power spectrum of the desired re-
sponse Sg 4(w). The notations s(n), ng and uy(n) are
replaced in order to simplify mathematical expressions
as follows:

~zo(n) = s(n), z1(n) =no(n), yi(n)=ui(n).
(24)

Letting ho and h; be the impulse responses of the paths
from the signal source to adderl and from the noise
source through filter 1 to adder2, respectively, the de-
sired response is expressed by

yo(n) = ho(k)zo(n — k) (25)

(26)

27)

Furthermore, the auto-correlation of d(n) is given by

Rqa(k) = Eld(n)d(n + k)] (28a)

(28b)

The power spectrum of d(n) is obtained as the
Fourier transform of Rdyd(k). After some transforma-
tions, we get

1 1
Saaw) =Y Hf (jw)H;(jw)Ss, 0, (jw)  (29)

=0 j=0
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where x denotes the complex conjugate operator. The
proof of Eq. (29) is provided in Appendix C. Now we
apply this result to the noise canceller circuit shown
in Fig.1. In this circuit, Hy(jw) = 1, Hi(jw) =
Fl(jw)v Sﬂloﬂio(w) = Ssas(w)v Sﬂil,wo(jw) = Snms(jw)=
Sz10 (W) = Sn,n,(jw) where S (w), Sn, s(jw) and
Sn,.m,(w) are the power spectrum of the signal, the
cross-power spectrum of the noise and the signal and
the power spectrum of the noise, respectively.

2.4 SRNC Performance Based on Correlatlons be-
tween Signal and Noise

2.4.1 Uncorrelated Signal and Noise

Under this condition, we have
Szie; =0 if ifj |
Szie; >0 if i=4. ‘ (30)

By using Egs. (24) and (30), Sgq4(w) given by Eq.(29)
is expressed by

Sa,a(w Z|H jw)l wz,xz( w)

= Ss,s(w) + |F1(Jw)| Sno,no(w>' (3D

Let us evaluate more explicitly Sy, 4(jw) by using a
well known technique in multiple-input system[6],[7].
It is easy to show

Suzu (J‘U) (32)

Next, we consider the relations between wuq(n) and
ug(n). They are given by

S’Lbz,d(jw) =

oo

us(n) = > ha(k)no(n — k) (33)
k=0

ur(n) = ha(k)no(n — k) (34)
k=0

where hi(n) and hg(n) are the impulse responses of
Fi(jw) and Fh(n), respectively. By multiplying each
side of above first and second previous equations by
no(n+ 1) and ug(n — 7), respectively, and applying the
expectation operator we get

Ryyino (T) = Eluy (n)no(n + 7] (35a)

= Efha(k)no(n + m)no(n — k)]

Ry n (—T — k). (35b)

wmg

In the same manner, we easily show that
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ug,ul § hl

Using auto-correlation function symmetry, substituting
Ry, n,(T) in Ry, 4, (7), and taking its Fourier trans-
form, we get

Ry o (T — k). (36)

= F1(jw)Fa(jw)Sn, n, (W) 37
Next, we must to do is to rewrite S, .(w) given by
Eq.(23b) using S, ¢(w) and S, »,(w). It is well known
that
Sz us (W) = ’FZ(jw)lzsng,no (w). (38)
By substituting Egs. (31) and (37) in Eq. (23b), we get
See(w) = Ss,s(w) + | F1 (jw)|25nmno (w)
_Snoy'na (CL)) |F1 (]w)|2' (39)

It is well known that the auto-spectrum of a WSS (wide
sense stationary) process is non negative [6]. That is,

[Sn,me (W)] = Srgmo (W), | (40)

then we have

See(w) = Sss(w) + |F1(jw)|25na,no (w)
~|F1(jw) Sy o (W)
= 5 s(w). (41)
This means that after the adaptation completely conver-

gence, the output error does not include noise compo-
nents, at the same time, the signal is not distorted.

Suz,m (]W)

2.4.2 Correlated Signal and Noise
By using Eq. (29),

Sd,d(“") = SS,S(“‘)) +F (jw)Ss,nu (Jw)

TFT (jw)Sn,,s(jw)

H 1L (j0) 1 Shoyn, (). (42)
Let us evaluate more explicitly S, 4(jw)
Ry,,a(17) = Elug(n)(s(n+7) +ui(n+7))] (43a)
Eluz(n)s(n + 7)] + Elus(n)ui (n + 7)]

= E[Y_ ho(k)no(n — k)s(n +7)]

I

+Elug(n)uy (n + 7)] (43b)
Ry n, (1) = Els(n)no(n + )] (44)

Ry, a(7) = i ha(k) Ry, (T + k)
k-_i-OE[uz(n)ul (n+1)]. (45)

It is well known that

Ron,(=7) = Ry, o(7) (46)
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Sng,s(J0) = 555, (@) (47)

Furthermore, we deal with real data in the paper. The
Fourier transform of both side of Eq. (41) yields

Suz a(jw) = 55, (jw)F2(jw)
+Sny m, (J00) F1 (Jw) P (jw) (43)

where Eq.(37) is also taken into account.
By substituting Egs. (42) and (46) in Eq.(23b), and
after some manipulations, we get

See(w) = Sas(w) + 1 F1(0)[* Sy m, (w)

+F1(jw)Ss,n, (W) + FT (jw) S5 ., (jw)
|85 1, (1) + Sn, n, (W) I (jw) 2
- Snone (w) (492)
_ 'Ss,na(jw)P
= S, s(w) S (@) (49b)

In the above expression, the second term indicates
effect of the cross-correlation of the signal and noise.
Since the signal-noise cross-correlation produces the
missing of some signal frequency components included
in the noise; that is, some distortion is caused, the sign
of the second term is minus. We can define the noise
canceller performance by

Se,e(w)
S s(w)

Prne = (50)

Since S ,,, (jw) is the cross-power spectrum, that is the
signal-noise correlation, Eq. (49b) shows that the noise
canceller performance is inversely proportional to the
signal-noise correlation.

3. Computer Simulation
3.1 Noise Path Characteristics

Second-order transfer functions are employed for the
noise paths Fy.and 5.

1—2pcosfz—t + p2z 2

o , ©=1,2 (51
1—2rcosgz=l + r2z—2 ’ 5D

Ei(z)=h

Fi:r =08, =n/4[rad],p = 1,0 = n [rad]
For=08,¢0=n/2[rad],p = 1,0 = w[rad]

Figure 2 shows the amplitude responses of the filters
P} and Fy. The normalized frequency of 1 Hz indicates
fs/2, where f, is a sampling frequency.

3.2 Cross-Correlation Function Computation
We have supposed that all processes used in this pa-

per are stationary. Therefore, the cross-correlation func-
tion does not depend on time, but depends only on the

IEICE TRANS. FUNDAMENTALS, VOL. E78—-A, NO. 11 NOVEMBER 1995

Amplitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.5 1

Nomalized frequency [Hz]

Fig. 2  Amplitude responses of Fy and F.

time lag. The cross-correlation function R, ,_ (jw) be-
tween the signal s(n) and the noise n,(n) is defined by
Eq.(44)[8]. In practice, however, a finite length of the
infinite length random data is only available. There-
fore, the cross-correlation function must be estimated.
For doing so, we must carefully set the lower and up-
per limits of the above series. First, the length of the
cross-correlation function is evaluated as follow:

For positive time lag, the lowest value is 0 and
the largest is (N — 1) — 0 = N — 1. Where N is the
data length. This means n = 0,1,---,N — 1. Then,
m € I = [0, N —1]. Similarly, for negative time lag,
me J = [1 — N,0]. Finally, the cross-correlation func-
tion length is 2(N — 1) +1 = 2N — 1. For positive lag
time, we have:

0<m<N-1and 0<n<<N-1—=

0<m+n<L2N —2. (52)
Because the term m + n must fall within the interval I,
we have m+n < N —1. Thatisn < N —m — 1. Fi-

nally, the cross-correlation function at positive lag time
(|m] =m) is given by

N—m—1

Z s(n)ne(n+m).  (53)

n=0

_ 1
T N—-m

Rsn, (m)

For negative time lag, we have:
1-N<m<£0 and 0€£n<N-1=
1-N<n+m<N-—1. (54)
Because the term m + n must fall within the interval I,
we have 0 £ m + n. That is n = —m. Finally, the

cross-correlation function at negative lag time (m < 0)
is given by
Ropalm) = 57— 3 s()na(nm) m <0
s,mo\TTL) = s(n)n,(n+m m .
S

(55)
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Equations (53) and (55) are referred to as unbiased es-
timate of the cross-correlation function[6]. In order to
show the cross-correlation function, it is shifted to the
right side. Then, the time lag zero on the graph corre-
sponds to the actual time lag 1 — NN, and the time lag
N on the graph corresponds to the actual time lag zero.
Finally, the time lag 2N — 2 on the graph corresponds
to the actual time lag N — 1.

3.3 Simulation Results

Computer simulations were carried out using real
sound, multi-frequency signal and their combinations.
They include, (1) Voicel/Multi-tone, (2) White noise
signal/White noise, (3) Voicel/Workstation noise, (4)
Voicel /Voice2, and (5) Multi-tone/White noise -+ one
common frequency. Different SNR (signal-to-noise ra-
tio) are investigated. The noise variance is normalized
to unity. The signal and noise correlation is computed
based on the unbiased estimate[8],[9]. The simula-
tion is repeated over 2x 10* iterations. The SNR after
cancellation is evaluated using the samples from 18001
to 20000 iterations. In the simulation results show in

b=
=
=
3
2.5 A
2 .
3
g 1.5
=
1y -
o.5 I =
00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Iteration x104
(b)
0.2
0.1
o
£ oal
=
0.2
o)
045 0.5 1 1.5 2 2.5 3 35 4
Sample %104
(c)
Fig. 3 Voice 1 /Multi-tone. (a) Voicel. (b) Residual noise

power at the canceller output. (c) Signal and noise cross-

correlation function.
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Figs. 3 through 7, SNR before noise cancellation is cho-
sen to be —20 dB. The adaptive filter has 20 taps. Fig-
ure 3 shows simulation results for the combination (1)
Voicel/Multi-tone. A drastic reduction in the residual
noise power is achieved. As shown on the graph of the
cross-correlation function, at many time lag, the signal-
noise cross-correlation is low.

Figure 4 shows simulation results for the combina-
tion (2) White noise signal/White noise. Since the two
white noises have no correlation, noise reduction is also
good. At a few time lags, the cross-correlation function
takes lower value compared to the previous case.

Figure 5 shows the combination (3) Voicel/ Work-
station noise. The performance is lower than the previ-
ous cases shown in Figs.3 and 4. The cross-correlation
function has higher value in average, compared to the
previous cases.

In Fig.6, the signal voice [ is the voice of a na-
tive Japanese male and the noise voice 2 is the voice of
another Japanese male telling the same sentence. The
learning curve has peaks at some iterations. The cross-
correlation function takes large values. This has caused

Vagnitode

Magminde
o
[}
L

Trerarion x104

(b)

0.12

©.1 |-

0.08

0.06 |-

©.04

Magnitude

0.02

-0.02

-0.04}-

-0.08
o 0.5 1 1.5 z 3.5 3 35 a

Sample %104

()

Fig.4  White noise signal/White noise. (a) White noise signal.
(b) Residual noise power at the canceller output. (c) Signal and
noise cross-correlation function.
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o8 1
%
= 0.6 -
0.4 -
0.2 -1
OD 0.2 - 0.4 0.6 o.8 1 1.2 1.4 1.6 1.8 2
Xrcrasion <104
()]
0.2
0.15
0.1+~
- 0.05 -
E=
£ ol - -
Q.05
ol
o155 0.5 1 1.5 2 2.5 3 3.5 a
' Samplc *x104
()
Fig. 5 Voice | /Workstation noise. (a) Workstation noise. (b)

Residual noise at the canceller output. (c) Signal and noise cross-
correlation function.

the peaks of the learning curve.

Figure 7 shows simulation results for the combi-
nation multi-tone signal/white noise + one common
frequency. The signal frequency, which is also included
in the noise, is the lowest one. The line spectra of the
canceller output shows the missing of that common fre-
quency. Thus, the signal frequency included in the noise
is canceled. This causes the signal waveform distortion.
The cross-correlation function takes higher values com-
pared to all the previous cases. The impulse due to the
auto-correlation of the white noise is buried in the sine
wave.

Table 1 establishes the relation between noise can-
celler performance and the signal-noise correlation. In
this table, SNRI is SNR before noise cancellation,
SNR?2 after noise cancellation, and DELTA, the differ-
ence between SNR2 and SNRI, that is the improve-
ment in SNR. The cross-correlation mean (CCM) is
calculated by averaging the absolute value of the cross-
correlation function.

. Figure 8 illustrates Table 1. The horizontal axis
is a semilogarithmic scale. It defines the signal-noise
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Magifede

Magitude

A w b Aok N oW Aoy

0.4 o.6 c.8

(b)

o.o5

-0.04,

(c)
Fig. 6  Voice l/Voice2. (a) Voice2. (b) Residual noise power

at the canceller output. (c) Signal and noise cross-correlation
function.

correlation which is calculated by averaging the abso-
lute value of the cross-correlation function. That is, the
signal and noise correlation is actually CCM. Mathe-
matical definition of CCM:

1 m=2N—-2
ON 1 Z | Rs,n, (M)]-

m=0

The vertical axis defines (a) SNR2 and (b) DELTA.
As shown in Fig. 8, the noise canceller performance is
inversely proportional to the signal-noise correlation.
These results are supported by the theoretical analysis
in Sect. 2.

CCM = (56)

4. Multi-Reference Noise Canceller

4.1 Block Diagram

The signal is generated from a single source. The noises
are generated from several sources. Figure 9 shows
a block diagram of the multi-reference noise canceller
(MRNC) [1],[2], which includes two noise sources. Fj;,
i=1,2,7 =1, 2, 3 represent noise paths from the
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04} | 0.4+
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O_J ) L o JL A
0 0.1 0.2 Q0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 [ <1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized frequency [Hz] Normalized frequency [Hz]
(a) (c)
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0351 1
031 4
€ oast 1
g o2} . t
=
0.15+ 1
0.1r i
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] 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 3 3.5
Normalized frequency [Hz] Sample
(b) (d)
Fig.7 Multi-tone signal /White noise + one common frequency. (a) Signal last 2000 sam-
ples power spectrum. (b) Noise last 2000 samples power spectrum. (c) Canceller output
fast 2000 samples power spectrum. (d) Signal and noise cross-correlation function.
Table 1 Relations between noise cancellation and signal-noise cross-correlation using
different SNRs.
Combination Voicel/ White noise/ | Voicel/Work Voicel/ Multitone/White noise+
SNRI Multitone White noise station noise Voice2 one common frequency
CCM = 0.0010| CCM = 0.0018 | CCM = 0.0021 | CCM = 0.0031 CCM = 0.0287
—20dB SNR2 = 22 SNR2 = 18 SNR2 = 15 SNR2 =9 SNR2 = 4
Delta = 42 Delta = 38 Delta = 37 Delta = 29 Delta = 24
CCM = 0.0032| CCM = 0.0057| CCM = 0.0067 | CCM = 0.0098 CCM = 0.0906
—10dB SNR2 = 22 SNR2 = 19 SNR2 = 17 SNR2 = 9 SNR2 = 4
Delta = 32 Delta = 29 Delta = 27 Delta = 19 Delta = 14
CCM = 0.0100| CCM = 0.0179 | CCM = 0.0210|{ CCM = 0.0310 CCM = 0.2865
0dB SNR2 = 24 SNR2 = 21 SNR2 = 20 SNR2 = 10 SNR2 = 4
Delta = 24 Delta = 21 Delta = 20 Delta = 10 Delta = 4
CCM = 0.0317 | CCM = 0.0565| CCM = 0.0663| CCM = 0.0981 CCM = 0.9061
+10dB SNR2 = 28 SNR2 = 27 SNR2 = 23 SNR2 = 10 SNR2 = 4
Delta = 18 Delta = 17 Delta = 13 Delta = 0 Delta = —6
CCM = 0.1001 | CCM = 0.1786 | CCM = 0.2096 | CCM = 0.3102 CCM = 2.8653
+20dB SNR2 = 30 SNR2 = 29 SNR2 = 24 SNR2 =9 SNR2 = 4
Delta = 10 Delta = Delta = 4 Delta = —11 Delta = —16

SNR1: Signal-To-Noise ratio before cancellation; SNR2: Signal-To-Noise ratio after cancellation;
CCM: Croos-correlation mean; Delta = SNR2 —SNRI1.

noise sources 1 and 2 to the adders 1, 2 and 3, respec-
tively. The noises n1(n) and nq(n) are added to the
signal through Fy; and Fy; at Addl, resulting.in d(n).

x104

It is assumed that the noises ni(n) and na(n) can be
detected by Add2 and Add3. The outputs from these
adders, u1(n) and uz(n), are used to generate a replica
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Fig. 8  Signal-noise cross-correlation and NLMS performance.

(a) Cross-correlation and DELTA relation. (b) Cross-correlation
and SNR2 relation.

Addl
- s(n)
Signal 5 d(n)
Source ..{ F21 ’_‘
F11
Noise
Source]
+
e{n)
Noise "
Source2
18 z AF2
F23
L1 u2(n) y2(n}
n22(n)
Fig. 9 Block diagram of multi-reference noise canceller.

of the noises mixed with the signal. Two FIR transver-
sal adaptive filters, AF}, and AFy with M tap-weights,
are employed. The adaptive filters tap-weights are ad-
justed using the NLMS algorithm.

Optimum transfer functions of the adaptive filters
can be obtained by setting e(n) to be equal to s(n) in
the block diagram shown in Fig. 9. First the following
condition is derived.

Ni1(2)[F11(z) — AF1p(2) Fia(2)
%AFZOpt(Z;)F13(z)]

IEICE TRANS. FUNDAMENTALS, VOL. E78-A, NO. 11 NOVEMBER 1995

+N2(2)[Fo1(2) — AP ops(2) Fa2(2)
_AFQOpt(Z)FQ,?,(Z)] =0 (57)

where AF,,:(2) and AF,,.(z) denote the optimum
transfer functions of the adaptive filters 1 and 2, respec-
tively. Under the assumption that noisel and noise2 are
uncorrelated, that is independent to each other, Eq. (64)
is true, if and only if the coefficient terms of Ny (z) and
Ny(z) are null. That is,

Fia(z) — AFlopt(Z)FIZ(Z)

—AFQOPt(Z)Flg(Z) =0 ) (58)
Fp1(2) — AFY i (2) Fo2(2)
—AFQDpt(Z)Fgg(Z) =0. (59)
Solving these equations yields
Fi1(2) Fas(z) — Fai(2) Fis(2)
AP ope(2) F12(2) Fas(2) — Fia(2) Faz(2) (60)
_ Fip(2)Foi(2) — Fiu(2)Faa(2)
AFQOpt(Z) Flz(Z)F23(Z) — Flg(Z)FQQ(Z) ) (61)

4.2 Computer Simulation
4.2.1 Noise Path Characteristics:

As shown in Egs. (60) and (61), the optimum adaptive
filters AF},,(z) and AF5,,(z) are rational functions
of 27!, which includes poles. Unstable poles in the
optimum AFi,,(z) and AFy,,(z) are avoided in the
simulation. Because this problem is not a point we are
discussing in this paper. The noise path transfer func-
tions are given by second-order functions as shown in
Eq. (51), and the parameters are given by

Fi1(2): Unity, Fy2(2): Unity,

F13(Z): Unity, FZl(z): Unity

Fa(z): r=0..8, ¢ = w/4[rad],
‘ p=1, # = w[rad]
Fys(2): r=0.8, ¢ = 3m/2 [rad],
p=1, 6 =m/2[rad]

Figure 10 shows the amplitude responses of Fha(z) and
F23 (Z)

4.2.2 Simulation Results

The signal source s(n) generates a speech signal. Noise
sources n1(n) and ng(n) generate white noise and work-
station noise, respectively. The following combinations
are considered. The combinations of speech signal and
two noises, which include White noise & Single tone 1
and White noise & Single tone 2. SNR1 equals 0dB
and each adaptive filter has 20 taps. Table 2 shows the
results. The tones 1 and 2 contain 5 frequencies. From
Table 2, the lower is the tone frequency component, the
worse is the cancellation. This result can be explained
as follows: Of course, speech spectrum mainly concen-
trates at low frequencies as shown in Fig. 11; then, when
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Fig. 10  Amplitude responses of noise paths Fh2(z) and Fz3(z).
Table 2 Tones 1 and 2 frequencies and SNR2 relation.
(SNRI = 0dB)
fl [KHz]
f2 [KHz 0.1 0203 1 |38
SNR2=
0.1 10dB 13 ) 14| 14| 14
0.2 11 13 | 16 | 18 | 19
0.3 12 14 16 | 20 | 22
1 13 17 | 20 | 21§ 23
3.8 12 15 | 18 | 22 | 26

f1: Tone 1 frequency; f2: Tone 2 frequency.

3500

30001

25001

2000

Magnitude

[8] 0.2 0.8 1

0.4 Q.6
Normalized frequency (Hz)

Fig. 11  Speech signal spectrum.

the tone approaches the low band, its correlation with
the speech increases.

Table 3 shows effects of the number of taps
on the noise cancellation. The combination Speech
signal/White noise/Workstation noise is considered.
SNR1 equals 0dB. For 20 taps, the improvement is
15dB. This is lower than 20dB obtained in SRNC
for the combination of Speech and Workstation noise
shown in Table 1. As a matter of fact, MRNC is more
sensitive to cross-correlation than SRNC. Moreover,
when the number of adaptive filter taps is increased,
SNR2 is reduced. This means that by increasing the
number of filter taps, the noise components included in
the signal are more precisely canceled.
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Table 3  SNR2 after noise cancellation by adjusting the adap-
tive filters of M taps. (SNR1=0dB)

M 20 | 50 | 100 | 200 | 400 | 800 | 2000 | 2500

SNR2
(dB) 151 15] 14 12 9 7 5 5

5. Conclusion

Single-Reference and Multi-Reference noise canceller
performances have been investigated based on the cor-
relation between the signal and the noises. For SRNC,
the simulation results have shown that the performance
is inversely proportional to the signal-noise correlation
as expected by the theoretical analysis. High correlation
between the signal and the noise causes significant sig-
nal waveform distortion. For MRNC, the same relation
is held. However, it is more sensitive to the signal-noise
cross-correlation than that of SRNC.
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Appendix A: Proof of Equation (18)

Here we recall Eq. (18) as a matter of convenience.

M—1
Ruy (k) = Y w(l)Ruy (k= 1) (A1)
1=0
Let us consider Eq. (16) given by
M-1
€ = Ry 4(0) — 2 Z w(k) Ry, a(k)
k=0
M—1M-1
+ w(k)w(l) Ry, u, (k —1). (A-2)

k=0 I=
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The mean square error reaches its minimum when the
gradient is mull; that is,

o
ow(k)

We will prove by the recursive method.

(A-3)

a) For M = 1 (The adaptive filter has one tap). Equa-
tion (16) gives

€2 = Ry 4(0) — 2w(0) Ry, a(0) + w?(0) Ry u, (0)

(A-4)
de? :
0(0) = —2Ry, 4(0) 4+ 2w(0) + 2w(0) Ry, v, (0)
=0 (A-3)
== Ruz d( ) w(O)R’uz,u2 (O) (A 6)
M=1=—k=0—=
0
Ry, a(k) =Y w(l)Rusus (k= 1) (A7)

Then Eq. (18) is true for one tap.

b) We suppose that Eq.(17) is true for M tap-weights,
and will show that it is true for (M + 1) taps. We recall
Eq. (17).
M—1
Oe?
= — u2 —|— 2
(k) : Z v

uz,uz - l)

(A-8)
For (M 4+ 1) taps, Eq. (16) gives

(A-9)

(A- 10)

+ + +
~ g e g o
g ol ||
] = O
g E 7
== o

S E =

= E =

N’ ~ g

& q=2

s §0®

| =

S
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(A-11)
M-—1
= Rd,d(O) -2 w(k)Ruz,,d(k)
k=0
M—-1M-1
+ w(k)w(l) Ry, u, (k= 1)
k=0 [=0
M—1
+2) " w(k)w(M) Ry, u, (k — M)
k=0
2

— 2w(M)Ry, (M)
(A 12)

As we see, the term in the bracket is nothing that
Eq.(16). Now we take the partial derivative of
Eq.(A-12). We have supposed that Eq,(17) is true for
M taps. So for k=10,1,2,--- M — 1, we have

O R, (k) +2 Z —1)
Bw(k) - ug,d w uzﬂbz
+ 2w(M) Ry (k — M) (A-13)
M
=2 w(l) Ruyuy (k — 1) = 2Ry, a(k).
=0
(A-14)

For &k = M, we see that the term in the bracket has no
contribution in the derivative. That is, we have

=2 E)Ry, w,(k— M
aw(M) E_O U)( ) 2 2( )
+2w(M)Ruy up (0) — 2Ry, a(M) (A-15)
= M2Ru2, (M)
+22 Rypus(M—E).  (A-16)
Then, Eq.(17) is true for all k = 0,1,2,--- M, that is
for (M + 1) taps. Now we only have to set
¢?
— =0. .
Bu(k) (A-17)

That ends the proof of Eq. (18).
Appendix B: Proof of Equation (21c)

Here we recall Eq. (21c) as a matter of convenience.

M-1

> w(l)Rau, (k—1).

=0

Ree(k) = Ra,a(k) — (A-18)

Let us recall the following equation, that is Eq. (21b).
R, .(k) = E[d(n)d(n + k)]
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M-1

= > w)Elus(n — D)d(n + k)]
Vs

- w(l)E[d(n)us(n+k —1)]
J\l/[=~01 M-—1

+ w(k) Z w(l)
k=0 =0

eEJug(n — Dug(n+ k—1)]. (A-19)

Now we replace the expectations by the autocorrelations
and cross-correlations functions.

M-1

oR,, u,(k—p+1).

Now to prove Eq.(21c), it suffices to shows that the
following expression is null.

(A- 20)

M-1

w(l)Ruy a(k+1)

]

=0

M—1 M 1
+ w( w(p)Rug uy (k —p+1).
=0 p:0
(A-21)
From Eq. (18), we write
M-1
Y w(p)Ruzus (k= p+1) = Ruyalk +1). (A-22)
p=0
Equation (A-21) becomes
M—1
= > w(l) Ry, a(k +1)
=0
M—1
+ ) w()Ry,a(k+1)=0. (A-23)
=0
R, (k) becomes
M-1
Raa(k) = > w(l)Ruya(l — k). (A-24)
1=0
It is well known that for WSS processes,
Ry, a(l—k) = Ry ., (k—1). (A-25)
Furthermore, here we deal with real data, then,
Ry ., (k—1)=Rgu,(k—1). (A-26)
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Finally, R. (k) becomes

M-1
Rec(k) = Raa(k) — Y w(l)Rau,(k—1). (A-27)
=0

Appendix C: Proof of Equation (29)‘

Here we recall Eq.(29) as a matter of convenience.

Sgalw ZZH

=0 j=0

Sz (w). (A-28)

We write the following previous expression of Ry 4(k);
that is Eq. (28b).

Rg,q(k)
1 1 oo o
=220 hhi(P)Re. ;1 + k).
1=0 j=0 =1 p=1
(A-29)

The power spectrum Sg 4(w) is the Fourier transform of
Rd,d(k}). That iS,

Saa(w) = > exp(—jwkT)Raa(k) (A- 30)
where 1/T is a sampling frequency.

xp (—jwkT)

Sd,d (w) =
k

1 oo o
SN )
i=0 §=0 =1 p=1
°hj (p)Rwi,:cj (k; +1= p)-

D

e
1
0
(A-31)
Now we insert in the precedent expression, the term

exp (—jw(p — )T) exp (+jw(p — )T) = 1. Then, that
precedent expression becomes

oo

Saa) = 3250 30 Sk0)

i=0 j=0 k=—o00 I=1 p=1
eexp (jwlT)h;(p) exp (—jwpT)

.Rfl,‘i,{ltj (k —+ l - p)

sexp (—jw(l —p+ k)T). (A-32)
Now wesetl—p+k=r7
1 1 oo
Saa(w) =>_ > "hi(l) exp (jwiT)
i=0 j=0 I=1
Z h;(p) exp (—jwpT)
=1
Z Ry, o, (T) exp (—jwrT). (A-33)

o0



1588

Here we recognize the Fourier transform of h and
R;, s, then,

1 1
Sga(w) = > H (w)H;(w)Ss, z,(w). (A 34)

i=0 j=0

That ends the proof of Eq. (29).

Yapi Atse has studied in undergrad-
uate course from 1981 to 1983 and got
certificate of mathematics and physics
in June 1983 at university d’ABIDJAN.
He obtained the degree of Ingenieur de
Speciafite Telecommunications in Ecole
National Superieure des Telecommunica-
tions d’ABIDJAN in June 1985, From
June 1985 to October 1985, He was in
France at CIT ALCATEL. From October
1985 to April 1991, he was with Ofhce Na-
tional des Telecommunications de C 6 te D’Ivoire. From October
1991, he has been enroiled in the doctoral course of Kanazawa
university. His research interests include digital signal processing
and adaptive filtering.

Kenji Nakayama received the B.E.
and Dr. degrees in electronics engineer-
ing from Tokyo Institute of Technology
(TIT), Tokyo, Japan, in 1971 and 1983,
respectively. From 1971 to 1972 he was
engaged in the research on classical net-
work theory in TIT. He was involved
in NEC Corporation from 1972 to 1988,
where his research subjects were filter de-
sign methodology and signal processing
algorithms. He joined the Department of
Electrical and Computer Engineering at Kanazawa University,
in Aug. 1988, where he is currently a Professor. His current
research interests include neural networks and adaptive filters.

TIEICE TRANS. FUNDAMENTALS, VOL. E78—A, NO. 11 NOVEMBER 1995

Zhigiang Ma received the B.S., M.S.
- degrees from Dept. of Automatic Con-
trol, Central South University of Technol-
ogy, China, in 1975 and 1982, respectively.
~ She received the Ph.D. degree in 1991,
from Dept. of Natural Science, Kana-
zawa University, Japan. She was with the
Hunan Microwave Communication Com-
pany (1975-79), Central South University
of Technology (1982—86), Fukui Institute
of Technology (1986—87), and C & C Sys-
tems Research Laboratories, NEC Corp (1991-92). Since 1992,
she has been a lecturer in Dept. of Electrical and Computer En-
gineering, Kanazawa University. Her current research interests
include digital signal processing, adaptive filtering and neural
networks. She is a member of IEEE.



