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SUMMARY The numerical property of the recursive least
squares (RLS) algorithm has been extensively studied. However,
very few investigations are reported concerning the numerical
behavior of the predictor-based least squares (PLS) algorithms
which provide the same least squares solutions as the RLS algo-
rithm. In Ref.[9], we gave a comparative study on the numerical
performances of the RLS and the backward PLS (BPLS) algo-
rithms. It was shown that the numerical property of the BPLS
algorithm is much superior to that of the RLS algorithm un-
der a finite-precision arithmetic because several main instability
sources encountered in the RLS algorithm do not appear in the
BPLS algorithm. This paper theoretically shows the stability of
the BPLS algorithm by error propagation analysis. Since the
time-variant nature of the BPLS algorithm, we prove the stability
of the BPLS algorithm by using the method as shown in Ref.[6].
The expectation of the transition matrix in the BPLS algorithm
is analyzed and its eigenvalues are shown to have values within
the unit circle. Therefore we can say that the BPLS algorithm is
numerically stable.

key words: adaptive filter, RLS algorithm, fast RLS algorithm,
numerical stability analysis

1. Introduction

In solving the least squares problem for transversal
adaptive filters, the recursive least squares (RLS) algo-
rithm is well known. The principle of the RLS algo-
rithm is based on the matrix inversion lemma in or-
der to get the recursive equations. The RLS algorithm
is characterized by a fast convergence rate and a high
computational load. Concerning the numerical proper-
ties, much research has been done. The results show
that divergence phenomenon may occur if the arith-
metic precision is not enough or the input signal is
ill-conditioned [1],[5],[7].

Another approach for solving the least squares
problem is to use the fast least squares (FLS) algo-
rithm. The principle of the algorithm is different from
that of the RLS algorithm in that the relation of the
forward and backward predictors and the gain vector is
exploited, which results in a fast convergence rate with
much less computation. However, the numerical insta-
bility of the FLS algorithm is so serious that it cannot
be continuously used in real applications, especially un-
der finite-precision implementation [2],[4].

The reason for the instability of the FLS algorithm
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is that the stable structure of the backward predictor
has to be destroyed in order to get the recursive equa-
tion for computing the gain vector. So if we assume
that recursion involves both order- and time-update, the
least squares solution can be obtained by using either
forward or backward predictor. Therefore, the stable
structure of both forward and backward predictors is
retained. This leads to the algorithms we called the
predictor-based least squares (PLS) algorithms[8].

Although the PLS algorithms can be easily derived
from the FLS algorithm, very few investigations con-
cerning their numerical properties are reported in the
literature. In Ref.[9], a comparative study on the nu-
merical properties of the PLS and RLS algorithms was
presented. Three main instability sources encountered
in both the RLS and the FLS algorithms, including the
unstable behavior of the conversion factor, the loss of
symmetry, and the loss of positive definiteness of the in-
verse correlation matrix, have been investigated under
the finite precision implementations. The results show
that these instability sources do not exist in the PLS al-
gorithm. Consequently, the PLS algorithm can provide
a more robust and stable numerical performance than
those of the RLS and the FLS algorithms. However,
even though the effects of three instability sources do
not appear in the PLS algorithm, the stability of the
PLS algorithm can not be guaranteed without theoret-
ical proof.

This paper gives the theoretical proof of the stabil-
ity of the backward PLS (BPLS) algorithm. First, we
show the approach for the proof, that is, the analysis
of error propagation. Next, we apply the method the
BPLS algorithm and show its stability.

2. Approach for Error Propagation Analysis

This paper adopts the method used in Ref.[6] for a
numerical stability analysis of an adaptive algorithm.
The method views an adaptive algorithm as a discrete-
time nonlinear dynamical system that can be written in
state-space form as

b(n) = f[6(n — 1), um(n)] (1

where 6(n) and u,,(n) denote the state vector and the
tap-input vector, respectively. Since a finite precision
implementation introduces errors, the infinite precision
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state vector (n) and the system (1) can be replaced by

d(n) = 6(n) + A8(n) and

6(n) = £ [00n = 1), um(m)] + Vi), @

where Af(n) denotes the state round-off error and V(n)
denotes the driving term that is the instantaneous contri-
bution from roundoff noise. Assuming that the errors
are small, we consider linearization of the system (2)
around 6(n — 1), which leads to

AfB(n) = A(n)Ab8(n — 1) + V(n) (3)
where
A(n) = Vo £ 18, % (m)]lg—p(n_1) - (4)

This is a linear time-variant system with a signal-
dependent A(n) matrix, whose exact statement about
the deterministic stability is difficult to make. In fact,
the state vector of the system may diverge if the worst
input signals are given. Nevertheless, one can make cer-
tain statistical statements when the input signal u(n) is
stationary and ergodic, more precisely, it is shown in
Ref. [6] that the state transition matrix

®(n,0) = A(n)A(n —1)--- A(1)

has an asymptotic constant eigendecomposition that
can be used to decide about the numerical stabil-
ity of the original system (1) and then the numeri-
cal stability of (1) is determined by the eigenvalues
of lim,, oo Ex[A(n)]. Consequently, we show that the
eigenvalues of lim,_, ., Ex [A(n)] of the BPLS algorithm
are within the unit circle in order to guarantee the nu-
merical stability of the BPLS algorithm in the following
sections.

3. Backward PLS Algorithm and Its State-Space
Model

In the FLS algorithm[3], the gain vector ks (n) is ob-
tained using the following two order-update equations,

Jun(n) o), )

cm+1(n). (6)

Notice that to derive kps{n) from kpr(n — 1), kpr41(n)
is used therefore reversely order-updated. This is known
to be the main reason for the instability of the FLS algo-
rithm [9]. In order to overcome this difficulty, the PLS
algorithms use either Eqs.(5) or (6) to get kps(n) so
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that the gain vectors k,,(n) and the predictors a,,(n)

or ¢p(n) for all m = 1,..., M have to be computed.
This increases the computational load from O (M) to
O (M?)[8].

Since the forward PLS (FPLS) and BPLS algo-
rithms, which can be derived from Egs.(5) and (6), ex-
hibit a very similar numerical performance, only the
BPLS algorithm is studied in this paper. For conve-
nience of analysis, we write the BPLS algorithm below:

Pm(n) = cm(n — 1)Tu,, (n), )
Bin(n) = ABm(n = 1) + % (n)¥m(n)?, (8)
em(n) = en(n—1) — Pu(n) [ km_()l(n) ] , 9
1 (n) = %%(n), (10)
Ym (1) Pm(n)

a(n) = d(n) —wy(n — 1)Tup(n), (12)
wpy(n) =wy(n—1)+ky(n)a(n), (13)
m=1,...,M,

where ¥,,(n) is the backward a priori prediction error,
B, (n) is the minimum power of ¥, (n), vm(n) is the
conversion factor, k,,(n) is the gain vector, ¢,(n) is
the tap-weight vector of the backward predictor, a(n)
is the a priori estimation error, u,(n) is the tap-input
vector, d(n) is the desired signal, and wps(n) is the
tap-weight vector of the adaptive filter. The a posteriori
backward prediction error b,,(n) in Eq. (6) is equivalent
t0 Ym (n)¥m, (n) in the above definition.

To initialize the BPLS algorithm at time n = 0,
set ¢,(0) = [07 _,,1]T, B,(0) = &, kyn(0) = O,
Ym(0) =1 for m = 1,2,..., M, where é is a small pos-
itive constant and 0,,, is the 1 x m vector all of whose
elements are zero. And at each iteration n = 1, generate
the first-order variables as v;(n) = 1 and ko(n) = |.
Then, all of the variables are derived with Eqs. (7)—(13)
when the input signal u(3),7 = 1,... are given.

Next, we derive a state-space model of the BPLS
algorithm. The first element of the state-vector is the
tap-weight vector of the backward predictor ¢,,,(n). Let

(km(n)T,OjT_m)T and (cm(n)T,OJT_m)T be denoted by
kJ.(n) and ¢, (n), respectively. When j < m, ¢l,(n) is
defined as the vector whose jth element is equal to that
of ¢,,(n). Then, Eq.(9) is rewritten as

cnm(n) = cm(n — 1) — Y (n)k,, _;(n). (14)
Substituting Eq.(7) to Eq.(14), we have
em(n) = (Bm = K_y(Mtm(m) )en(n—1)  (15)

where E,, is an m x m identity matrix. Because the
mth element of ¢,,(n) is constantly unity, we get the
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transition formula of ¢,,(n) as

cnt(n) = (Em-s
~kpn—1(n)um—1(n)en ™ (n - 1)

~u(n —m+ 1)km_1(n). (16)

The second element of the state-vector is the minimum
power of the backward prediction error By, (n). Sub-
stituting Eq.(7) to Eq.(8), the transition formula of
B,,.(n) is written as

B,,(n)

= ABn(n—1)
+7m(n)cm(n - 1)Tum(n)
Am(n) T epm(n — 1)

= ABm(n—1)
+¥m(n)em H(n — 1)Tum_1(n)
Ao ()T (- 1)
F2u(n — m 4+ Dty ()T~ 1)
+u(n —m+1)% (17)

It is worth noting here that the gain vector k,,,(n) and
the conversion factor 7,,(n) are not state variables be-
cause they are given not by time-update but by order-
update.

According to Sect. 2, the transition matrix A(n) is
given by differentiating the state-space model Egs. (16)
and (17) by the state vector

(i)
G(n)—( Bo(n) )
which results in

| Em_1—km-1(n)tm_ 7T o
An) = ( o (m) b (= Dum()T A ) (18)

Since 0 < A < 1 and since A(n) is block-lower-
triangular, it remains to show that all the eigenvalues
of Ex [Epn—1 — km—1(n)um_1(n)T] are asymptotically
smaller than unity in magnitude.

4. Eigenvalues of the Transition Matrix

In this section, we show that the eigenvalues of
Ex [Ep — km(n)um(n)T] are asymptotically within the
unit circle. Actually, they are approximately all equal
to A unless numerical errors exist, since Ref.[3] shows
that the gain vector k,,,(n) is equal to X, (n) ‘um(n)
where

= Z )‘n_ium(i)um(i)T
i=1
and then

lim Ex [km (R, (n)T]

n—oo

holds when 1 — A <« 1 because

~(1-MNE,
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lim X, (n)~ (1-A"'R
and
R=Ex [um(n)um(n)T].
Consequently,
lim Ex [Ep — km(n)um(n)T] = Ep—(1—X\)En

= )\Ema

which confirms that all the eigenvalues of Ex [A(n)] con-
verge approximately to A as n — oo.

The argument above assumes the convergence of
the gain vector k,,(n). In the following, we show more
strictly that the eigenvalues of Ex [A(n)] exist within the
unit circle under the assumption that the input signal is
Gaussian. In case of m = 1, ¢;(n) is constantly equal
to 1 and then stable. So, by mathematical induction,
we can assume the stability of ¢;(n),i =1,...,m when
we show that the eigenvalues of Ex[A(n)] are smaller
than unity in magnitude, which leads to the stability of
Cm+1(n).

Let Cpi(n), Dp(n), and ¥,,(n) be defined as

)

Cm(n) = (c1'(n), ..., cp(n)), (19)
D,(n) = diag{d;(n ), cenydim(n)}, (20)
(n) = Ym+1(n) 7i(n)
di(n) Yit1(n) Bi(n)’ @D
U () = (@1 (n),..., $m(n)”
= Cp(n — 1)Tun(n), (22)
respectively. By recursive use of
(1m0 [ k()
ko) = (1= =G ) [ By |
Ym{1)Pm(n)
+—m—cm(n— 1) (23)
which is given by Eq.(9) and Eq. (11),
kn(n)
_ABp(n—1)
- Bm n m——l(n)
Ym (1)t (1)
+ Bon(n) en(n—1)
_ ABgnEnn— 1) m(n)
Ym(n)
+Bm(n) em(n —1)ep(n — 1) Tu,, (n)

I
=
L%
—3
>
H mwm
=3
Sl
=
N———
x|
3|E
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is derived. Therefore, the transition matrix E,, —
km(n)u,(n)T is written as
Em — km(n)um(n)T
= Ep — Cou(n — 1) Dy (n)Crn(n — 1)T
U (0) e (1) T
=Cpr(n-1)(E,
— D (n) ¥, (n) T, (1)) Cr(n — 1)L
Consequently, the eigenvalues of the transition matrix
coincide with those of E,, — Dpn(n)¥,,(n)¥,(n)T.

From the assumption of the stability of ¢;(n),i =

1,...,m, and then that of C,,(n), we only need to

consider the eigenvalues of E,, — D,,(n)¥,,(n) ¥, (n)7T.

Since c;(n) is the tap-weight vector of the backward pre-
dictor and 1;(n) means the a priori backward predic-
tion error by their definitions, when ¢;(n) converges,
Ex [4;(n)?] approaches to its minimal value, that is,

Ex [@bz(n)Q]
=Ex [e;(n — DT u;(n)u;(n)Tei(n — 1)

— min,

and its derivatives by the jth element (¢;(n — 1)); of
ci(n—1) for j=1,...,i—1 become null, that is,

Obx [¢i(n)2]‘ = Ex [(ui(n));us(n) ei(n — 1)]

8(ci(n - 1))]
= Ex[¢s(n)u(n - j)]
=0

This means that ;(n) is statistically orthogonal to

u(n—j3),j=1,...,i—1,and then¢;(n),j =1,...,i—1
because 1;(n) is a linear combination of u(n), ..., u(n—
7). Therefore,

Ex [¢;(n)y;(n)) =0 (25)

is satisfied when ¢ F j. Equation(25) means that
¥i(n),i = 1,...,m are statistically independent since
U,.(n) obeys a Gaussian distribution by the assump-
tion that u,,(n) is Gaussian. Since the 7,j element of
D (n) ¥ (n) ¥, (n)T is

Yms1(n)  7i(n)s(n);(n)

Yi+1(n) ABi(n — 1) 4+ vyi(n)ips(n)?’
its expectation is zero when ¢ 3 j because of their inde-
pendence, and the diagonal elements

Ex Ym+1(n) vi(n)i(n)?

Yit1(n) ABi(n — 1) + vi(n)i(n)?
are between 0 and 1 because
vi(n)¢i(n)?

AB;i(n — 1) + v (n)¢i(n)?

0< <1

and
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0 < Ym+1(n) £ 7i41(n)

for any ;(n). So, it has been shown that all
of the eigenvalues of the expectation of E, —
D, (n)¥,,(n)¥,,(n)T exist between 0 and 1, and so do
the eigenvalues of the expectation of

Cm(n —1)(En,
—Dp(n) ¥, (0) T, (n)T)C, (n — 1)L (26)
When ¢;(n),i = 1,...,m are not independent be-

cause of the error of C,,(n — 1), the expectation of
E, — Dy (n)¥,,(n)¥,,(n)T does not become a diago-
nal matrix any more. However, if the error is small (for
example, order of ¢), the eigenvalues of the expectation
also move a little (order of £) and still exist within the
unit circle.

Computer simulations are done to confirm that the
eigenvalues of the ensemble-averaged transition matrix
are asymptotically within the unit circle. A backward
predictor with 10 taps is employed for the simulation.
Each of the tap-weight vectors of the backward predic-
tors ¢,,(n) and the gain vectors k,,(n) consists of an
8-bit exponent and a 3-bit mantissa. The input u(n)
is made by an AR model (1,a;,az)) driven by a white
Gaussian noise N(0,1) where

a; = —2r, cosb, 27
ay = ri, (28)
Ty = 0.82, (29)
0 =m/4. (30)

The initial parameter § = 10 and the forgetting factor
A = 0.95 are used. The eigenvalues of the ensemble
average (50 samples) of the transition matrices at time
n = 15 (early stage) and n = 50 (convergence stage)
are calculated. The simulation results shown in Fig. |
clearly demonstrate that the eigenvalues are within the
unit circle in both cases. More precisely, they are scat-
tered around their theoretical asymptotic value of (), 0),
even though the finite-precision arithmetic is used for
computing the predictors and the gain vectors, which
support the theoretical results given above.

Unit Circle
0.04 ¢ n=15 |+
n=50 X
0.02
X *
0 + XXX ++7 %X
K %
-0.02
-0.04

09 092 094 096 098 1 102

Fig. 1 Eigenvalues of the average of the transition matrices at
n =15 and n = 50.
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5. Conclusion

The numerical stability of the BPLS algorithm has
been proven in this paper using the method of error-
propagation analysis, that is, the expectation of the tran-
sition matrix is shown to have eigenvalues within the
unit circle. The computer simulation results also show
that the transition matrix has eigenvalues within the unit
circle in average even under a low-bit word-length im-
plementation. Since the superiority of the BPLS algo-
rithm over the RLS algorithm is supported not only
experimentally but also theoretically, it is very promis-
ing that the use of the RLS algorithm and its square
root versions may be replaced by the BPLS algorithm.
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