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Multilayer Neural Networks
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SUMMARY A training data selection method is proposed
for multilayer neural networks (MLNNs). This method selects
a small number of the training data, which guarantee both gen-
eralization and fast training of the MLNNs applied to pattern
classification. The generalization will be satisfied using the data
locate close to the boundary of the pattern classes. However,
if these data are only used in the training, convergence is slow.
This phenomenon is analyzed in this paper. Therefore, in the
proposed method, the MLNN is first trained using some number
of the data, which are randomly selected (Step 1). The data, for
which the output error is relatively large, are selected. Further-
more, they are paired with the nearest data belong to the different
class. The newly selected data are further paired with the nearest
data. Finally, pairs of the data, which locate close to the bound-
ary, can be found. Using these pairs of the data, the MLNNs are
further trained (Step 2). Since, there are some variations to com-
bine Steps 1 and 2, the proposed method can be applied to both
off-line and on-line training. The proposed method can reduce
the number of the training data, at the same time, can hasten the
training. Usefulness is confirmed through computer simulation.
key words: training data selection, generalization performance,
multilayer neural networks

1. Introduction

Recently, multilayer neural networks (MLNNs)[1] have
been used in pattern classification and signal process-
ing field[2]-[5]. In these applications, generalization
is important. A huge amount of the training data may
guarantee generalization of the MLNNs. On the other
hand, it will require a long training time and a large
data memory. Therefore, it is desirable to reduce the
number of the training data while maintaining general-
ization.

This kind of approach has been discussed upto
now. Battiti[6] used the mutual information to eval-
uate the input feature to limit the input dimensionality.
This approach is to reduce the complexity of the net-
work.

The training time can be reduced by reducing the
number of hidden units. Many papers have been pre-
sented for this subject[7]-[9]. In statistical approaches,
Fukumizu and Watanabe[10] proposed a training data
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selection method by using error analysis for the func-
tion approximation. Cachin[11] proposed the error-
dependent repetition. Presentation probability of the
training data is controlled to be proportional to the
MLNN output error. However, the entire data are used
in the training process.

In this paper, we propose a training data selection
method for the MLNNs applied to pattern classifica-
tion. The purpose of this method is to select a small
number of the training data, with which both general-
ization and fast training are guaranteed. The selected
data can locate around the decision boundary between
the pattern (or data) classes. In this paper, we assume
the following data distribution, that is the data distribu-
tions of the different classes are separated. This means
they do not overlap to each other. This method can be
applied to reduce in data memory and computations of
off-line training, where a sufficient number of training
data are obtained in advance. Furthermore, it will be
useful for on-line training, where all training data can-
not obtain at the beginning, rather they are gradually
increased.

Efficiency of the proposed method is investigated
through computer simulations. The back propagation

_ algorithm [ 1] is used to train the MLNN. Two kinds of

problems are employed as examples.
2. Multilayer Neural Network

In this paper, a two-layer MLNN is used to classify the
data. N samples of a piece of data, that is the input vec-
tor & = {z;,i = 1 ~ N}, is applied to the input layer.
The ith input unit receives z;. The connection weight
from the ith input to the jth hidden unit is denoted w;;.
The input potential net; and the output y; of the jth
hidden unit are given by

N
netj = Zw”xz —+ Oj (1)
=1
y; = fu(net;) (2)
_ e—netj
fu(nety) = T =t (€)

where, fg(-) is the activation function in the hidden
layer and 6; is a bias. The input potential nety and the
output g of the kth output unit are given by



HARA and NAKAYAMA: DATA SELECTION FOR GENERALIZATION

J
netk = ijkyj + 0k ) (4)
=1
Yr = fo(nety) (%)
1
fo(nety) = m (6)

where fo(-) is the activation function in the output
layer.

The number of output units is equal to that of the
pattern or data classes. The MLNN is trained so that
a single output unit responds to one of the pattern or
data classes.

3. Geometrical Relation between Input and Output

The input space can be separated into two regions by a
hyperplane formed by net; = 0 in Eq.(1). A distance
between this hyperplane and the input vector z is given
by

N
Z wijmi + Hj
dj = H=2 = , (7)

[

’wj:{wij,i:lNN}. (8)

where [|w;|| is an Ly norm of the weight vector w;.
Since ||wy;|| is independent of the input @, the input
potential net; is proportional to the distance d;. The
activation function Eq.(3) is a monotonically increas-
ing function, then the hidden unit output y; 1s also
monotonically increasing with respect to the distance
d;. However, y; is not a linear function of the distance.

The output of the output unit yy, is separated by the
ranges of y, > 0.5 and y, < 0.5. The input potential
nety = 0 provides a decision boundary. This is called
“a network boundary” in this paper. On the other hand,
in order to express the boundary between the data be-
long to the different classes, a term “class boundary”
is used. If the training converges, the network bound-
ary will agree with the class boundary. Then a distance
from the class boundary to the input data is related to
lyx — 0.5]. In this case, nety, is also related to the dis-
tance.

In conclusion, |y — 0.5| and |nety| are monotone
functions with respect to the distance between the data
boundary and the input data.

4. Pairing Method for Training Data Selection
4.1 Pairing Method

In this paper, two classes X; and X5 are taken into ac-
count for convenience. However, the proposed method
can be applied to more than two classes.

In this section, a pairing method is first described.
In the pairing process, pairs data of the different classes,
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whose Euclidean distance is minimum, are selected. Let
X1 and X, be sets of two data classes, and z; and x5
be elements of them. ®; and z, are paired with each
other through the following steps.

Step 1: Select 21 (or @3) from X; (or X5) randomly.

Step 2: Select x5 (or @) from X5 (or X;), which has
the shortest distance to the x; (or x3), selected in
Step 1.

Step 3: Select :czl’l (or :c‘z’l) from X; (or X'5), which has
the shortest distance to @3 (or &%), selected in Step
2.

When all the data are selected from X; (or X3) in Step
1, the pairing process is completed. Otherwise, return
to Step 1, and repeat the above process. In this process,
the same data will not be selected. Finally, the data «%

(or 2£') and 2 (or '), selected based on the distance,
are included in the reduced data set.

In this paper, it is assumed that the data distribu-
tions of the different classes do not overlap. Therefore,
the class boundary locates between the nearest data of
the different classes, facing each other. Thus, the data
locate close to the boundary can be selected by this
method.

4.2 Training Using Data Selected by Pairing Method

The data selected by the pairing method are gathers of
the pairs of the neighbor data. The training using these
selected data takes a long time for the following two
reasons.

First, to classify the similar data into the differ-
ent classes, the network output must be sensitive to the
change of the input. In this case, the slope of the sig-
moid function must be steep. To do so, the absolute
value of the connection weights must be large. If the ini-
tial connection weights are small and net; distributed
within a narrow range in a linear part of the sigmoid
function, this requires many iterations.

Second, the connection weights are not properly
modified to the selected data. Consider =¥, € X; and
xh . € X as the selected data.

(1) When ||, — b || < 1 is held.

If the network boundary is far from «f,, and zf_,,
the output of the output unit for these data satisfy
Yim =2 Yomy = 1 or 0. In this case, the connection
weights are adjusted properly. So, the network bound-
ary approaches to «f,, and @} ,. At the same time,
Yim and yo,, approach to 0.5. In this case, as shown
in the next paragraph, the amount of the correction de-
creases. Especially, when the network boundary exceeds
@}, (or x4 ) and enters between them, the amount of
the correction weight becomes very small.

This can be proven as follows: We assume 4,y o
Y2m =2 0.5. The correction of the connection weight for
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the mth pattern A, is defined as follows:

Ay = némomj (9)
b = (tm — ym) f' (netm) (10)

here 0,,; is the jth hidden output. Since the selected
two data are similar, if 01y, = 02m/; and f§(netim) =
f5(netay) are satisfied, the correction of the connec-
tion weight is

A1777,_{”A27'n,’ = nolmj{(tlm_ylm)'i'(th’ _y2m’)}
(11)

Suppose the targets are t1,, = 1,3, = 0. For
Yim = Yam: = 0.5, (tim — Y1m) + (tamr — Yomr) =
(1 —0.5) + (0 — 0.5) = 0. The total weight correction
for both @}, and @}, , becomes very small. Thus, the
convergence of the training becomes very slow.

(2) When |1, — @am|| < 1 is not held.

In this case, if the network boundary approaches to the
data, y1,, =~ 0.5 and Yo, 2 0.5 are not held at the same
time. Therefore, the total weight correction is not small.

In the next section, we will propose the training
and pairing method to avoid the problem of the slow
training as shown in Eq. (1).

5. Data Selection Method Combining Training and
Pairing Processes

5.1 Data Selection and Training Algorithm

This method combines the training and the pairing pro-
cesses as follows:

Step 1: Some data are selected from the training data
sets X; and X, at random. The selected data sets
are denoted X and X7, respectively.

Step 2: The MLNN is trained by using the data of X7
and X7 until the mean squared error (MSE) E
satisfies,

E §€1 (12)

Step 3: The data denoted «§ and 5, for which the out-
put error is greater than §, are selected as they are
located near the network boundary. These data
sets are denoted X5 and X5, respectively.

Step 4: The data ¥ and «} are selected from X7 and
X7, with which the distances ||z} — x5} and
|zh — x§|| are the minimum. The set of z§ and
xh are also denoted X7 and X7}, respectively.

Step 5: The data z]° and «5° are selected from X7 and

7, with which {|z}° — @} and ||25° — «]|| are
the minimum. The set of 2} and «5° are denoted
X7%® and X%°, respectively.
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Step 6: The MLNN is further trained by using the data
of X%, X%, X%° and X35° until E satisfies,

E<Le (13)

Step 7: Evaluation of the trained network. The clas-
sification performance of the trained network is
evaluated by the validation data set. This data
set is dependent on the application. This will be
discussed in Sect.7.2.2 more.

A general rule how to determine 6, £, and &5 is not
provided in this paper. It should be investigated more.
At the present, we determine them by experience.

5.2 Off-Line and On-Line Training

The proposed data selection methods can be applied to
both off-line training and on-line training[13]. In the
off-line training, all the data are given at the beginning
of the training.

If a large amount of training data is available, the

data selection is desirable to reduce the training time
and memory capacity. In the on-line training, the train-
ing data are not given all together, but are given succes-
sively. Furthermore, they may change continuously. If
the data successively received are all accumulated, then
the number of the data will be extremely large. There-
fore, in this application, the training data selection is
also important.
Off-line Training: In this case, we suppose that all the
data are known in advance. After processing Steps 1
through 6, another X* and X" are selected from X
and X, and are added to the previous X7, X5, X7°
and X%°. Thus, the new data sets become

X7 (new) = X7*u X7 uX%° (14)
Xi(new) = XU XU X% (15)

The processes Steps 1 through 6 are repeated using

the new X7 and X7,. Furthermore, the above processes
are repeated until the error for all the data X; and X
satisfies the requirement.
On-line Training: In this case, we cannot get all the
data in advance. The data will be observed sequen-
tially.. In Egs. (14) and (15), X7* and X5* become the
sequentially observed data sets. The remaining parts
are the same as in the off-line training except for the
validation data set, which will depend on stationary or
nonstationary cases. . Some volume of the recent data
should be held to validate the trained network.

When the number of the data, used in the training
and pairing method, is small, the meaningful data can-
not find its partner, and will be removed. In order to
avoid this problem, some lower bound for the number
of the data is necessary. In the on-line training, it is bet-
ter to select the training data after accumulating some
number of the input data.
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5.3 Data Distribution

The purpose of the training in Step 2 is to find the data,
which locate close to the class boundary, with fewer
computations. Therefore, the training is stopped at the
middle stage using the criterion ;. In Sect.6.2.2, this
criterion for the off-line training is described.

Even though the training is not completely con-
verged, the data, which locate close to the class bound-
ary can be detected using the output error. The bound-
ary formed through the initial training in Step 2 may be
a little different from the class boundary. By the paring
in Steps 4 and 5, the data locate near the class boundary
can be selected.

On the other hand, the paring using all the data
require a huge number of combinations. Furthermore,
the training using the data selected by only the pairing
converges very slow as discussed in Sect. 4.2. The details
of selecting the data are described in the following.

For convenience, a two-dimensional pattern clas-
sification given by Fig. I (a) is employed. Class 1(#1)
region is inside the circle and Class 2(#2) region is the
outside.

In Step 2, the network is trained by using the data
sets X7 and X5 randomly selected from all the data in
Step 1. These data cannot cover exactly the class re-
gions. Therefore, we suppose, for instance, a triangle
boundary is formed after Step 2 as shown in Fig. 1 (b).
It will be explained in the following that the data close
to the class boundary can remain in ether class or both
classes in Step 3. Furthermore, using these data as ¢
and x5, the data close to the class boundary can be
selected in both classes.

The regions in Fig.1(b) are categorized into four
parts, A, B, C, and D. The network classifies the data in
the triangle into Class 1 and the outside Class 2. The
data in the regions B and D are correctly classified, and
the corresponding output error are small. However, the
data in B close to the boundary between A and B have
relatively large error. The same situation occurs for the
data in D close to the boundary between C and D. On
the other hand, the data in the regions A and C are mis-
classified, and have large output errors. These data, z$§
and z§, are selected in Step 3 due to their large output
error.

In Step 3, however, the data far from the class
boundary are included, and the data close to the bound-
ary are missed in ether class. In Steps 4 and 5, the redun-
dant data are removed and the necessary data are further
extracted from X7 and X3. In Step 4, the data in X¢
and X35 find the nearest data from X7 and X7, which
are 5, and «7, respectively. Further, ¥ and «} find the
nearest data from X7 and X35, which is «5° and «1°,
respectively. The shortest distance between two data in
both classes means they face across the class boundary.

Figure 2 shows another example, where the data
locate in the shaded parts are only satisfy the condi-
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(a) (b)

Fig. 1 (a) Class distribution, (b) Classification result by not
well achieved network.

Fig. 2 Example of two-class classification.

tions’ M SE > § in Step 3, and are detected. Some data
in the regions marked by oblique line will be missed.

By using the pairing method proposed in Sect. 4,
the data in the different classes locate close to =§ and
x5 can be found. They are denoted #} and z% as shown
in Step 4, respectively. Therefore, the data near the cir-
cumference in B in Fig. 1 will be detected.

6. Computer Simulation
6.1 Computer Simulation Conditions

Two-dimensional two-class classification is employed
for the computer simulations. The number of the in-
put unit IV is 2, and the number of the output unit X is
2. Then, the data is X = {X 1, X2} and the input data
is @ = {1, x2}. Six hidden units are used.

Figure 3 shows a concept of the problems. One of
the classes is shown as shaded region, and the other is
dotted region. Whited region between the classes shows
a gap, so there is no overlap.

For the training, a learning-rate parameter 7 is 0.1,
and a momentum coefficient « is 0.8. They are decided
by experience. The circle in square is called Problem 1,
and the sinusoidal in square is called Problem 2 in the
following sections.

In Problem 1, two classes are defined as follows:

Xlz{m|m1+x2§(r—fy)2} (16)
Xy ={z|z2+ 22 > (r+4)%} (17)

here, r is the radius of the circle and is 0.39. v is width
of the gap, and is 0.02.
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— X

0o — X 0

(a) Circle in Square (b) Sinusoidal in Square

Fig. 3 Concept of problems. (a) Circle in square, (b) Sinu-
soidal in square.

In Problem 2, two classes are defined as follows:

X, = {x|Asin(2rz1) L z9 — v} (18)
X, = {x|Asin(2rxs) > z2 + 7} (19)

where, A is 0.22.

A total number of the data in each class is 1000.
Two hundreds of the data are selected randomly from
1000 data in each class, and are used as the validation
data.

6.2 Off-Line Training
6.2.1 Pairing Method

For the off-line training, the pairing method is first used.
Figure 4 shows the entire data of Problem 1, and Fig. 5
shows the data found by the pairing method. From
Fig. 5, the class boundary is formed by the selected data
properly. Sixty-five data are selected for each class.

The MLNN is trained with the selected data. The
stopping criterion is e2 = 0.001 in Eq. (13). Iteration of
23763 is needed for convergence.

6.2.2 Training and Pairing Method

Next, the training and pairing method is employed. The
initial training is stopped at MSE < &1 = 0.05. All the
data are used in the initial training. Then, the data are
selected by using the criterion § = 0.073 in Step 3. In
Problem 1, 207 data are selected from Class 1, and 164
from Class 2. In Problem 2, 116 and 150 data are se-
lected from Class 1 and 2, respectively. The pairing is
done using these data in Steps 4 and 5. As a result, 114
and 62 data are selected in Problems 1 and 2, as shown
in Table 1. &2 in Step 6 is 0.001.

Figure 6 shows the distribution of the data selected
above. From these figures, the boundaries are detected

properly.
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Fig. 5 Selected data by pairing method.

Table 1 Comparison of computational complexity between
conventional and proposed training methods.
Prob. 1 Prob. 2
Convl | Conv2 | Prop | Convl | Prop
Init. 0 112 134 0 18
Epoch 2444 1701 4394 | 89 390
N of data | 2000 1800 114 2000 62
Comp. 1 0.63 0.10 1 0.14

Init.: Epoch of initial training. N of data: Number of data.
Conv: Conventional method. Comp. Computation
Prop: Proposed method

6.2.3 Comparison with Conventional Methods

Training with all the data is called the Conventional
Method 1 in this paper. Furthermore, the following
method is called Conventional Method 2. Some num-
ber of the data are selected from the entire data at ran-
dom, and are used in the initial training. All the data
are used after this training[15]. In this simulation, 100
data for each class is used in the initial training.

Table 1 shows the results. Computation complex-
ity is defined as the number of the data multiplied by



HARA and NAKAYAMA: DATA SELECTION FOR GENERALIZATION

0.6 T T T T

Class 1 ©
Class 2 +

0.4
b
*++
¥
¢ oy
o
o

w +
b

°°°o<;‘o ]
+
i

+

&+ 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

(a) Circle in square.

Clags 1 ©
! Class 2 +

|
|

i L .

0 0.2 0.4 0.6

(b) Sinusoidal in square.

Fig. 6 Selected data by training and pairing method.

the number of iterations of the training. In the last
row (Comp.), the computational complexity of Conven-
tional Method 1 is normalized be 1. In both Problems 1
and 2, the computational complexities of the proposed
method are the minimum.

6.2.4 Relation between Distance and Network Output

Figure 7 shows relation between the distance, between
the input data and the boundary, and the network out-
put. The MLNN in Step 2 of Problem 1 is used. The
input data of (a) is zo = 0 and (b) is £; = z,. This
means, the data locate on the vertical line and the line
with 45 degree slope. The horizontal axis is the dis-
tance from the origin of the data space to a data. The
vertical axis is the output of the output unit to the in-
put data of the horizontal axis. The slope of the curves
in (b) are much steeper than those of (a) around the
class boundary 4- 0.4 on the horizontal axis. These fig-
ures demonstrate the relation between the distance and
the network output is not always the same. We can-
not directly estimate the distance from the output, as
mentioned in Sect. 5.3.
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Unit output

'

o
Distance

(a) Input data satisfy zo = 0

Tnit outpet

o
Distance

(b) Input data satisfy z1 = 2o

Fig. 7 Network output and distance in data space.

6.3 On-Line Training

The on-line training is simulated using the partial data
of Problem 1. The entire data X is separated into three
sets as described below.

Xoyp = {®|z2 2 0.167} (20)
X mia = {2]|—0.167 < z, < 0.167} (21)
Xdown - {-’B ‘IQ g —0167} (22)

Each data set includes 333 data.

Xp is used as X7 and X7 in the first training pro-
cess. X g and X g, are used as the remained train-
ing data in Step 1 of Sect.5. The stopping criterion &
in Step ! is 0.05, and 5 in Step 6 is 0.01, respectively.
¢ for all training process is 0.073.

Figure 8 shows the result of the on-line training
using the selected data. The training is converged and
their percentage of correctly classified are 100% for the
entire data. The boundary is also detected correctly.

Two conventional methods and the proposed
method are compared in computational complexity. In
Conventional Method 1, the data given until the present
are accumulated and are used as the present train-
ing data. In Conventional Method 2, as discussed in
Sect.7.2.2, the above accumulated data are treated as
all the data at the present. The initial training and the
overall training are done using these data.

To compare three methods, the computational com-
plexity of Conventional Method 1 is normalized be 1.
The computational complexity of Conventional Method
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(a) Training data in Step 2 in 2nd training process. Upper one
third region is selected data in lst training process and middle
region is newly given data.
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(b) Training data of Step 2 in 3rd training process. Upper two
third regions are selected data in 2nd training process. MLNN is
trained with data of (a). Rest of the region is newly given data.
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(c) Selected data of Step 5 in 3rd training process. MLNN is
trained with data of (b).

Fig. 8 Selected data in on-line training: Problem 1.

2 is 0.56 and that of the proposed method is 0.29. From
this result, the proposed method is also superior to the
conventionals.

7. Conclusion

The training data selection method for the multilayer
neural networks (MLNNs) has been proposed. The se-
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lected small number of the data can guarantee general-
ization with low computational complexity. The pro-
posed method combines a training and pairing processes
in this order. The training process provides the semi-
optimum network, with which the next training can be
hastened. The pairing process can select the nearest data
of the different classes, which locate close to the class
boundary. The proposed method can be applied to the
off-line and the on-line training.

Two examples of two-dimensional two-class pat-
tern classification were simulated. In the off-line case,
the proposed method can reduce the number of the
training data and the training time. The classification
performance is the same as the conventional method
using all the data. In the on-line training, the same
properties described above are obtained using the suc-
cessively received data.
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