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Abstract

In this paper, a synthesis and learning method for the
neural network with embedded gate units and a multi-
dimensional input is proposed. When the input is multi-
dimensional, gate functions are controlled in a multi-
dimensional space. In this case, a hypersurface, on
which the gate function is formed should be optimized.
Furthermore, the switching points should be considered
on the unit input. An initialization and a control meth-
ods for gate functions, which optimize the hypersurface,
the switching point and the inclination, are proposed.
The stabilization methods, already proposed, are further
modified to be applied to the multi-dimensional environ-
ment. The gate functions can be trained together with
the connection weights. Discontinuous function approzi-
mation is demonstrated to confirm usefulness of the pro-
posed method.

1 Introduction

Multilayer neural networks (MLNNs) have been applied
to a wide variety of fields. They include prediction, diag-
nosis, analysis, pattern classification, function approxi-
mation and so on [1]. An essential function used in all
applications is pattern mapping. In order to realize the
neural networks, several design methods have been pro-
posed to minimize network size [2]-[6].

An important point is a rule, which governs the pat-
tern mapping. If different rules are involved in a prob-
lem, it is difficult to solve it by using only a single
MLNN, which consists of linear connections and con-
tinuous activation functions.

Modular neural networks are useful approaches to
this kind of problem from performance view point [7],[g].
However, this method requires an independent expert
network for each rule. One expert network is only used
for a single mapping rule, and cannot be shared by differ-
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ent rules. Therefore, from network size view point, this
approach is not elegant. In order to share the same net-
work by different mapping rules, gate units are embed-
ded in the neural networks [9]. A single neural network
changes its structure with respect to the input data, and
works just as different networks.

A simultaneous learning algorithm for connection
weights and gate functions has been proposed [10]. The
gate function is formed with a sigmoid function, with
sharp inclination. The switching point of the gate func-
tions are trained together with the connection weights.
Some stabilization techniques have been proposed. How-
ever, the input is limited to one dimensional.

In this paper, the above method is expanded to
multi-dimensional input neural networks. In this case,
the gate functions should be optimized in the multi-
dimensional space. New methods for determining the
initial guess, controlling the slope and the hypersurface
of the gate functions are proposed. Computer simulation
of discontinuous function approximation will be shown
in Sec.7 to confirm usefulness of the proposed method.

2 Network Architecture

2.1 Network Structure

Figure 1 shows the neural network with embedded gate
units and a multi-dimensional input. The input poten-
tial u; and the output y; of the hidden units are given

by
I
u; = ijifﬂz, T()—l (1)
i=0
yi = [faly), 1<j<J (2)

x¢ is bias and f,() is an activation function in the hidden
layer. Transmission of the output y; is controlled by the
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Figure 1: Structure variable neural network with embed-
ded gate units.

gate units as follows:

fgj()
9;5Yj

(3)
(4)

The gate unit output g; takes 1 or 0 depending on the
input @. Therefore, the hidden units are selected based
on the input data. The input potential v; and the out-
put of the output units are given by

gj
Yj

J

ve = Y wigly,  fo=1 (5)
j=0

zy = folur), 1<k<K (6)

Jo is bias. f,() is an activation function in the output
layer.

2.2 Gate Units

The gate function fy;() is trained together with the con-
nection weights wj; and wy;. For this purpose, the fol-
lowing function is employed.

1
fgj(m) = 1 + ebsh(@)+c;5)

(7)

An inclination and a switching point are determined by
b; and c¢;j/b;, respectively. To realize a switching func-
tion, b; must be large. However, a large b; will cause
s ome difficulty in a learning phase, that is slow con-
vergence or local minimum. It will be controlled in the
learning process from a small value to a large value grad-
ually. Since we do not know discontinuous points in
mapping rule, that is switching points of the gate func-
tions, ¢; must be automatically adjusted for each appli-
cation.
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3 Simultaneous Learning Algorithm

The learning algorithm is based on the gradient decent
method. A cost function is given by

1
E = — - 2
K kg 1 (di, — z1)

dy, is the target. The correction term is determined by
the partial derivative. Letting p(n) be a parameter at
the nth iteration, it is updated by

(8)

E
) (9
dp(n)
Learning the gate function is similar to the activation
function training [5],[6]. Compared with the above, the
hidden unit outputs are replaced by the gate unit out-
puts in the new structure. From Egs.(33), (3) and (4),
the gate output is expressed by

. 1 1

Ui = foj (@) fn(us) = 1+ eih(@)+e) 1 + e—us (10)
Here, the sigmoid function is used for the activation
function f5(). The trainable activation functions pro-
posed in [5],[6] have the following form.

p(n +1) = p(n)

L
aj
y = f(u) :Z{W+dl} (11)
=1
A learning method for adjusting both the connec-
tion weights and this activation function was also pro-
posed. The parameters ay, b, ¢;,d; are trained together

with the connection weights w;; and wy;. Compared
with Eq.(11), Eq.(10) has another function
1
Trew (2

which can be regarded as a constant in adjusting b; and
Cj.

On the other hand, in calculating the partial deriva-
tive of EZ with respect to wj;, the other function

1
1 + e(ih(T)+c;) (13)
can be regarded as a constant. Therefore, the update
formula proposed for the trainable activation functions
can be basically applied [5],[6].
Connection Weight Update

wrj(n+1) wi;(n) + Awgj(n+1) (14)
Awgj(n+1) = nory; + alwg;j(n) (15)
o = (de —zr)ze(n)[1 — z1(n)]  (16)
wiin+1) = wj(n) + Aw;i(n+1) (17)
Awji(n+1) = nojz; + aAwji(n) (18)

K
G3(n)[1 — g5 (n)] > drwii(n)(19)

k=1

?;



Swtching Point Update

e, = di— 2z (20)
K
& = Y awymzml-z)  (21)
k=1
cj(n+1) = ¢j(n)+Acj(n+1) (22)
Acj(n+1) = n0c&gi(1 —g;5) + accj(n) (23)

7. and . are a learning rate and a momentum term.

4 Gate Functions for Multi-Dimensional Input

4.1 Hypersurface of Gate Function

The gate function fy;() is defined by Eq.(7). How to
determine h(x) is discussed here. Since the gate units
are assigned to the hidden units, one way is to set the
hypersurface, on which the gate function is formed, to
be the same as that of the activation function given by

I
uj = ijﬂ?i (24)
i=0
h(x) is formulated as
N Wy
Wi = — (25)
> i1 Wil
I
’&j = Z?Z)jimi (26)
i=1
(8) = — b 27
ng (U‘J) - 1 +e*(bjﬂj+0j) ( )
gi = Jgs(ity) (28)
Jj 9iVi (29)

A ratio among wj; determine the hypersurface, and ab-
solute value of w;; affects inclination of the gate func-
tion, which should be controlled by b;. Therefore, w;;
are normalized in the above formulation, which deter-
mine only the hypersurface. One example is shown in
Fig.2. The activation function and the gate function are
formed on the the same hypersurface. The inclination
of the gate function is very sharp.

4.2 Compensation of Switching Point

The switching point of the gate function locates on the
1; axis, and should be located within the range, where
U; is distributed. However, the range of 4; changes
as the connection weights are adjusted. Therefore, the
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Figure 2: Relation between activation function and gate
function. They are formed on the same hyper-

plane.

switching point is compensated for as follows:

I
ﬁ4jmaw(n> = ijia mj’i Z 0 (30)
i=1
I
djmin(n) = Y _ji, by <0 (31)
i=1
iisp(n) — ajmm(n) _
Ujmaz(n) = Wjmin(n)
ﬁsp(n — 1) — ’&jmm(’n — 1) (32)

1)

This process is illustrated in Fig.3. The updating pro-
cess is as follows: The connection weights w(n — 1) and
the switching points #sp(n — 1) are updated at n — 1
iteration. 1jmin and fjma. are calculated, and the
new switching point denoted #sp(n) is obtained above.
Gisp(n — 1) are replaced by sp(n), which are further up-
dated at n iteration.

ﬁjmam(n - 1) - ﬂjmin(n -

switching
point ™
N\
=K u
NN/ N
— +
N N\
Umin Umax

Figure 3: Compensation of switching point tracking change
of 4; rang due to connection weight adjustment.

5 Learning Process

5.1 Multi-Stage Learning Process
In the multi-dimensional input network, determining the
initial guess for the gate functions is rather difficult. So,



the following multi-stage learning process is proposed.
Stepl

To find the initial guess for the gate functions, the net-
work without the gate units is used to learn the given
problem. The sigmoid functions are used to emulate the
gate functions. After convergence, information about
the gate functions are extracted from the activation
functions, that is the switching points, the hypersur-
face and the inclination as will be described in Sec.5.2.
Random gate units and flat gate units are also added to
make the network has more freedom.

Step2

The connection weights and the gate functions are simul-
taneously updated. The inclination b; is adjusted by the
annealing way, which will be described later. The net-
work shown in Fig.1 is used.

Step 3

In this step, the hypersurface of the gate functions are
assumed to be optimized, and are fixed. Since the con-
nection weights are adjusted more, the hypersurface of
the activation functions can move toward different direc-
tion. The switching points are further slightly adjusted.

5.2 Initial Guess for Gate Functions
Initial Guess of Inclination
In Stepl, the activation functions are expressed as

1
yj = fnluj) = 14 et (33)
Here, the following is defined,
I
’LNLJ' == ijiwi (34)
i=1
Equation (33) is rewritten using u;,
= = L 35
Yj —fh(ua)—m (35)
Furthermore, 4; is related to 4 as,
I
iy =Y |wjili (36)
i=1

From these relations, Eq.(33) is finally expressed using
1 as follows:

1
1+ e Zi=1 lwgilag—wjo

yi = fn(uy) = (37)
Comparing Eq.(7), the inclination of fj,(u;) on the 4,
axis is determined by Zle \wj;|. Therefore, the ini-
tial inclination of the gate function is determined using
Zle \wj;| after Stepl.

Initial Guess for Switching Points
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From Eq.(7), the switching point is given by —c;/b;.
Comparing Eq.(37), the following relation can be held.

G o_

bj

wjo
I
> lwiil

Therefore, ¢; satisfying the above relation is used for the
initial guess of the switching point.

However, if the initial switching point obtained above
locates outside the range of 1, it does not work well. In
this case, the switching point, which randomly located
or the center of the 4, range, is used instead.

(38)

6 Stabilization of Learning Process

6.1 Control of Gate Function Inclination
The inclination of the gate function fg;() must be sharp,
in order to realize discontinuous function. However, the
optimum switching points are not known exactly be-
fore hand, even though the initial guess is estimated in
Stepl. The switching points are optimized by adjusting
c¢;j in a learning process. In this phase, if the inclination
is very sharp, that is b; has a very large value, the partial
derivative of fg;() is very small in a wide range of ;.
This causes very slow convergence, and the gate func-
tion cannot move toward the optimum switching point.
For this reason, in the proposed method, the inclina-
tion b; is adjusted in an annealing way. It is controlled
from a relatively large value to a very large value grad-
ually in a learning process. Change of the inclination is
shown in Fig.4.

b;: large < 7{{
/

K
4

9

Figure 4: Annealing of inclination of gate functions in
learning process.

6.2 Re-initialization of Connection Weights
In the proposed method, the sigmoid functions are used
in the hidden units and the gate units. This means the
hidden units can play a role of the gate units instead.
However, the role of the hidden units is to approximate
the mapping rule in each section. For this purpose, the
inclination of both functions are controlled.

The inclination of the sigmoid function with fixed
coefficients is determined by absolute value of the con-
nection weights |wj;|. If they have a large value, the



inclination, that is, dy;/0x becomes sharp, which can
work as the gate function. If the hidden units play as
a role of switching, the gate units cannot move toward
the optimum switching points. In order to avoid this
problem, the connection weights w;; are reset to small
random numbers or scaled down to small numbers. This
means the learning of the connection weights is restarted
using small numbers at some intervals.

In Step2, the connection weights are compressed so
as to maintain the hypersurface of the gate functions.
Like this, the connection weights used for the gate func-
tions are normalized, therefore, this re-initialization of
the connection weights does not affect the gate func-
tions. On the other hand, in Step3, the hypersurface
of the activation functions and the gate functions are
independent, then random small numbers are used for
re-initializing the connection weights.

7 Simulation and Discussions

Problem

Discontinuous function approximation is taken into ac-
count to evaluate the proposed method. The target is
generated using the same network shown in Fig.1 with
random parameters.

Control and Reinitialization of Gate Functions
Figure 5 shows scheduling of inclination control and re-
initialization of the gate functions.

Step2 Step3
Iteration | 20000 | 25000 | 30000 |35000 |37500 | 40000 | 42000 | 44000

Slope Initial | 1.5 | 1.5
Lower bound| 25 50 100

200 300 400 500 1000

Reset Compres Random Random

Figure 5: Schedule of inclination control and re-
initialization of gate functions.

Parameters

Number of input units including bias: 3 units

Number of hidden units: 4 units in Stepl, 6 units in
Step2 and Step3

Number of output units: 1 unit

Learning rate for connection weights: n = 0.1

Learning rate for gate functions: n = 0.1

Number of training data: 1000

Number of maximum iterations: 50,000

Initial guess for connection weights: Random numbers
in [-0.1, 0.1]

Scaling factor of compression reset: 0.1

Simulation Results

Figure 6 shows the target. The result of Stepl is shown
in Fig.7, which roughly approximates the target. Us-
ing this result, the gate functions are initialized. Figure
8 shows the learning curve. The connection weights are
reinitialized at 20,000, 35,000 and 40,000 iterations. The
mean square error (MSE) defined by the following equa-
tion is well reduced.

1 (1
E = FZ ?Z(dk — 2p)? (39)
P p=1 k=1

Furthermore, transition of switching points and inclina-
tion of the gate functions are shown in Figs.9 and 10,
respectively. In Fig.9, the switching points are adjusted
from 20,000 iterations. Before that, the initial guess
are only shown as constant, which has no meaning. The
inclination control is different for each gate function. Fi-
nally, the approximation result is shown in Fig.11. It is
almost the same as the target.
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Figure 7: Approximation result in Stepl.

8 Conclutions

In this paper, a synthesis and learning method for
the neural network with embedded gate units and a
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Figure 9: Transition of switching point of gate functions.
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Figure 11: Approximation result in Step3.
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multi-dimensional input has been proposed. In multi-
dimensional input, gate functions are controlled in a
multi-dimensional space. The hypersurface, on which
the gate function is formed, is optimized. The switch-
ing points should be considered on the u; axis, which
is the input potential of the hidden units. The initial-
ization and stabilizing methods for the gate functions
including the hypersurface, the switching point and the
inclination, have been proposed. The gate units can be
trained together with the connection weights. Discon-
tinuous function approximation has been demonstrated
to confirm usefulness of the proposed method.
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