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ABSTRACT function of the output signals and nonlinear functions, which
. . . are used in updating coefficients in a separation block. Op-
A network structure and its learning algorithm have been timum nonlinearity has been discussed [13], [14], [15], and

proposed for blind source separation applied to nonlinearadamve nonlinear functions have been proposed [16], [17],
mixtures. The network has a cascade form consists of 18]

source separation block and a linearization block in this or- =

der. The conventional learning algorithm is employed for o4ty such as loud speakers. In this case, signal sources are
the separation block. A new learning algorithm is proposed mixed in a complicated manner, and are difficult to be sep-

for the linearization block assuming 2nd-order nonlinearity. arated. In these problems, both source separation and lin-

After, sourcefsepre]lranon, the ou:puts 'ndu_?ﬁ_ the n?n“ne_arearization are simultaneously required. One way to model a
components for the same signal source. IS nonlinearity ,,njinear mixture is a combination of a linear mixing pro-

is suppressed through the linearization block. Parameters,eqq and a nonlinear transform in a cascade form. In a sepa-
n lth_'s blogkc?re éteratwely_ adjufsted_ balsed O_ntj prcg_:essl, Ofration block, a linearization process and a linear separation
solving a 2nd-order equation of a single variable. Simula- ., ess are arranged in this order. Spline nonlinear func-

tion results, using 2-channel speech signals and an instantagong or spline neural networks have been applied to the
neous nonlinear mixing process, show good separation PeMinearization process [19], [20]. Furthermore, a maximum

formance. likelihood estimator has been applied [21]. However, sepa-

ration performance is not enough.
1. INTRODUCTION In this paper, an approach is proposed, in which a linear

separation process and a linearization process are arranged

Recently, many kinds of information are transmitted and i this order. First, the signal sources, which include nonlin-

processed through world wide communications. Commu- €arity, are separated based on their statistical independency.

nication terminals are used under a variety of environments.In the linearization process, the nonlinear components in

At the same time, high quality is required. For this reason, €ach signal source are suppressed through an iterative learn-

signal processing including noise cancelation, echo cancedNg algorithm.  Simulation using 2-channel speech signals

lation, equalization of transmission lines, restoration of sig- @nd 2nd-order nonlinearity will be shown to confirm useful-

nals have been becoming very important technology. In Ness of the proposed method.

some cases, we do not have enough information about sig-

nal sources and ir?terference. Furthermore, their mixing pro- 2 CASCADE FORM BLIND SOURCE

cess and transm|SS|qn process are not well know.n in gd- SEPARATION

vance. Under these situations, blind source separation using

tsta'f[istical property of the signal sources has become impor-, 1 Network Structure

ant.

Jutten et all proposed a blind source separation algo-A proposed cascade form blind source separation (BSS) is
rithm based on statistical independence and symmetrical disshown in Fig.1. The nonlinear mixture model is the same
tribution of the signal sources [1]-[8]. Two kinds of stabi- as in [19], [20], [21]. First, the signal sourcesare mixed
lization methods have been proposed for Jutten’s methodthrough linear combination resulting iry. After that, they
[9],[10]. Convolutive mixture models have been discussed are transmitted through nonlinear functiofisresulting in
[11],[12]. Convergence and separation performances arer;. In the BSS block, a linear source separation process and
highly dependent on relation between a probability density a linearization process are arranged in this order. In the con-

n actual applications, mixing processes include nonlin-



ventional methods, they are arranged in the reverse order. Finaly, the separated and linearized signal sources are ob-
In the proposed method, the number of the observationstained.

& au Y1 = cs )
. Y2 = C1282 (10)

& & c11 andep are some constant.
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. 3. LEARNING ALGORITHMS

s an Y . .

soutce n - oupur 3.1. Linear Separation Block

‘ | If s; ands; are statistically independent, then s; +aq2s7
:'”"""""Mi'x'i'ag”éiac';z rrrrrrrrrrrrrrr i:npu‘ Separation Biodk andas; s + a0 are also independent. They can be sep-

(Sensor) arated through the conventional learning algorithms for lin-
_ ear mixtures. So, the learning algorithm based on likelihood
Fig. 1. Network structure of proposed cascade form BSS. gagtimation [22], [23], [24] is employed in this paper.

x; are increased from that of the signa sourgeas order to W(n+1) = W(n) +nAt) — o(z(n) 2T (n)]W (n)
increase conditions used in cancelling the nonlinear terms (11)
in the linear separation block. For examplg, s3 ands; s,
are cancelled iny, andsy, s? ands; s, are cancelled in.,
respectively.

If linear separation is complete, its outputsinclude
only a single signal source and its nonlinear components.
This nonlinearity is suppressed through the linearization block2. Linearization Block

7 is a learning rateA (¢) is a diagonal matrix, ang() is a
nonlinear function [18].

Transformations in the linearization block are given by Eqgs.(7)
and (8). However, in real applications, the coefficients

One example is shown here. Two signal sources and 2nd-are not known. So, they should be adjusted through an it-
order nonlinearity are used. In this case, four observationserative method. Equations (7) and (8) can be expressed by

2.2. Exampleof Linear Separation and Linearization

x1 ~ x4 are required. They are expressed by using two parameters as follows:
1 = a1181 +a1282 + a1387 + a148182 + aiss; (1)
To = a2151 + s + az3s] + ag45152 + a2555 (2) yi(n) = (12)
T3 = az181 + asess + az3si + azas152 + aszsss (3)
Ty = 4181+ 1282 + a38T + a148182 + aas sy (4) ap = (13)
The mixing process is assumed to be linearly independent. g = — (14)
Thus, from the above equations, the cross terss can be ’ biz
cancelled, and two independent outputsand z, can be . i )
obtained. They still include the 2nd-order testhand s2, a; andg; are adjusted through an iterative method.
respectively.
Error Function:
z1 = biisi +biast (5) In this paper, 2nd-order nonlinearity is assumed. Thus, after
2o = bo1Sg + bagsoe (6) the linear source separation, the outputs include 1st-order

) ) _ and 2nd-order terms of the signal sources. Furthermore, if
Sincez; andz; include onlys, ands,, respectively, they  ye take speech and music signals into account, their average

a cost function.
B _—bi £/bf; +4b1oz
no= Gila) = 21 (7) | Mo
—bo1 & /b2, + 4bgaz Ei(n) = — yi(n —1) (15)
yo = Ga(z)= —= 21 2= (8) M =

2baa



The gradient descent algorithm is used for adjusting the pa-3.4. Comparison with Conventional Methods

rameters.
Nonlinear BSS methods have been proposed in[19],[20],[21].

ai(n) = oi(n—1)—n OE;(n) (16) In these methods, the linearization block is used before the
dai(n) linear separation. However, linearization of the mixed sig-
Bi(n) = Bin—1)— OE;(n) (17) nals including the cross terms, likgs, is difficult. Further-
! ! 9Bi(n) more, a simultaneous learning for both signal separation and
OE,(n) | M1y (n—1) linearization is unstable. In the proposed method, the lin-
! = — A earization block is used after the linear separation. Let the
dai(n) M = dai(n) mixed signals be expressed with high-order polynomial, the
M-1 9 signal sources, including high-order components of them-
1 1 ai(n) ai(n) : 5 .
= — (—= + ( selves likes; ands;, can be separated through the linear
M 1=0 2 4 4 separation process. In other words,is still independent
1 1 on thes;, ¢ # j components. Since the cross terms are not
+mz(n —0)7F) (18) independent, they can be suppressed through the linear sep-
M aration process. After that, the linearization in each signal
OEi(n) - Iyi(n —1) source is easier than that for the mixing signals with nonlin-
9Bi(n) M —  9Bi(n) earity.
5 Although the proposed method is limited to 2nd-order
= (n _l ai(n) nonlinearity, it can be extend to 3rd-order nonlinearity. In
= 0 257 4 this case, network becomes complicated. Since in a wide
1 range of application fields, order of nonlinearity is mainly
+5i (n) 2(n—1))"2) (19) up to 3rd-order, this limitation of order does not lose gener-
ality.

Porality Control
In the above update equations, there is a freedom of polar-
ity. It should be judged which polarity should be used. For 4. SIMULATIONS AND DISCUSSIONS
this purpose, the following conditions are introduced. These

conditions do not lose generality in real applications. i ) .
4.1. Simulation Conditions

1. Alinear component is greater than a nonlinear com-
ponent. Two signal sources and four observations are used. The sig-

_ o . nal sources are male speech signals. The mixing matrix is
2. The signal source level is limited. Say, for instance

|si(n)] < 1. 1 9
Under these conditions, in the linear separation output, A= —23 21
zi(n) = bi1si(n) + bios? (20) 2
the following inequality is always held. The learning rate i§ = 0.001. The nonlinear functions in
the mixing block are
[birsi(n)] > [bis? (n) (21) J
This means the porality of;(n) is equal to that 0b;; s;(n). Fi(u) = u+0.4u?
So, except for the polarity df;;, that of the outpuy;(n) Fy(u) = u+0.2u?
can be controlled so as to be the same as thaf(ef). The Fy(u) = u—0.6u2
polarity of b;; does not affect separation performance. Be- ' 0
Fy(u) = u+0.3u

cause in blind source separation, constant scaling inherently
remains.

3.3. Combination of Both Learning Algorithms 4.2. Linear Separation

In the proposed method, first the linear separation block isThe parameters;; are trained by the learning algorithm
trained. After convergence, the linearization block is ad- described in sec.3.1. The learning curve is shown in Fig.2.
justed. This separate training is stable. The vertical axis indicateSN R in dB, the horizontal axis is



the number of update iterationS N R is defined as follows:

2

o2 = Z power ofs; in z;,
i=1
wheres; is dominant (22)
2
op = ) _ power ofz; exept fors;,
j=1
wheres; is dominant (23)
2
SNR, = 10log,, Z—Q (24)
2
ol = > powerofs; ands? in z;,
=1
wheres; is dominant (25)
2
ol = ) _power ofz; exept fors; ands?,
j=1
wheres; is dominant (26)
2
SNR, = 10logy, ;‘—2 27)

n

In this figure, bothS N R, andS N R, are shown with a solid

line and a dashed line, respectively. In the linear separation

process, the 2nd-order componesfsare not suppressed,
because they are also independent components against
and s?, i # j. S0,SN Ry has some meaning. The final
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Fig. 2. Learning curve for output of linear separation block.
SNR; and SN R, are shown with solid line and dashed
line.

z1(n) andzz(n) are shown below.

52851 — 1.19s5 4 6.0552 — 1.665,55 + 3.8852
—0.2151 4 7.0s5 — 0.035% + 1.945155 + 3.9253

21
z2
In z1(n) andz2(n), s1(n) andss(n) are extracted, respec-

tively. In z;(n), s1(n) ands?(n) remain. On the other hand,
in z2(n), s2(n) ands3(n) are dominant. In both outputs, the

interferences, that is;, s2 ands; s in 21, ands;, s and
$189 IN 29, are reduced.

4.3. Linearization

Error valuation

In this process, separation performance is also evaluated by
SN R; defined by Eq.(24). In the simulation, taecompo-

nent and the other components are discriminated as follows:
In the linearization blockz;(n) is linearized through

Let
9 ) feast o)+ () () (29
Furthermore,
\/aisf(n) +bisi(n) + ci(n) = d;isi(n) + e;(n(30)
azsf(n) + bisi(n) + ¢i(n)
= d?s3(n) + 2d;si(n)ei(n) + e;(n)? (31)

Comparing the coefficients, the following relations are ob-
tained.

&2 = a (32)
2d¢6¢ (n) = bz’ (n) (33)
ei(n) = ci(n) (34)

a; andc;(n) are calculated using;, 5; andz;(n) at each
sample.SN R is evaluated by

SNR; = 101 ]% (35)
1 M-—1 -

p(n) = MZ(yi(nHj—ei(n))Q (36)

g(n) = —Z 5 +ei(n)’ (37)

The learning curves for both the linear separation and the
linearization processes are shown in Fig.3, with a solid line
and a dashed line, respectivel/NV R meansSNR;. SNR
after the linearization improved bysdB compared with
that after linear separation. ApproximatelyN R;=30dB

is guaranteed, which is good separation performance.

4.4, Waveforms

Figures 4, 5 and 6 show waveforms of the speech signal
sources, after the linear separation and the linearization, re-
spectively. In Fig.4, the upper and the lower ageand
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Fig. 3. Learning curve for output of both linear separation
and linearization blocks with dashed line and solid line, re-
spectively.SN R meansSN R;.

sa, respectively. In Figs.5, 6, the upper and the lower are
z1(n) andy;(n), andzz(n) andys(n), respectively.s; (n)

and sz(n) are extracted irxq(n) and zz(n), respectively.
The polarity ofss(n) is reversed. The waveforms after the
linear separation and the linearization are almost the same.
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However,SN R is slightly improved after the linearization. Fig. 4. Waveform of signal sources, which are male voice.
Upper and lower are; andss, respectively.

5. CONCLUSIONS

In this paper, a blind source separation method has been
proposed for instantaneous nonlinear mixtures. It consists
of the linear separation and the linearization in a cascade
form. Both blocks are separately trained. The conventional
learning algorithm of linear mixtures can be used for the for-
mer block. The new learning algorithm has been proposed
for the latter block. Nonlinearity in the mixture is assumed
to be 2nd-order. Simulation, using two speech signals and
2nd-order nonlinearity, shows usefulness of the proposed
method.
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