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ABSTRACT

A network structure and its learning algorithm have been
proposed for blind source separation applied to nonlinear
mixtures. The network has a cascade form consists of a
source separation block and a linearization block in this or-
der. The conventional learning algorithm is employed for
the separation block. A new learning algorithm is proposed
for the linearization block assuming 2nd-order nonlinearity.
After, source separation, the outputs include the nonlinear
components for the same signal source. This nonlinearity
is suppressed through the linearization block. Parameters
in this block are iteratively adjusted based on a process of
solving a 2nd-order equation of a single variable. Simula-
tion results, using 2-channel speech signals and an instanta-
neous nonlinear mixing process, show good separation per-
formance.

1. INTRODUCTION

Recently, many kinds of information are transmitted and
processed through world wide communications. Commu-
nication terminals are used under a variety of environments.
At the same time, high quality is required. For this reason,
signal processing including noise cancelation, echo cance-
lation, equalization of transmission lines, restoration of sig-
nals have been becoming very important technology. In
some cases, we do not have enough information about sig-
nal sources and interference. Furthermore, their mixing pro-
cess and transmission process are not well known in ad-
vance. Under these situations, blind source separation using
statistical property of the signal sources has become impor-
tant.

Jutten et all proposed a blind source separation algo-
rithm based on statistical independence and symmetrical dis-
tribution of the signal sources [1]-[8]. Two kinds of stabi-
lization methods have been proposed for Jutten’s method
[9],[10]. Convolutive mixture models have been discussed
[11],[12]. Convergence and separation performances are
highly dependent on relation between a probability density

function of the output signals and nonlinear functions, which
are used in updating coefficients in a separation block. Op-
timum nonlinearity has been discussed [13], [14], [15], and
adaptive nonlinear functions have been proposed [16], [17],
[18].

In actual applications, mixing processes include nonlin-
earity, such as loud speakers. In this case, signal sources are
mixed in a complicated manner, and are difficult to be sep-
arated. In these problems, both source separation and lin-
earization are simultaneously required. One way to model a
nonlinear mixture is a combination of a linear mixing pro-
cess and a nonlinear transform in a cascade form. In a sepa-
ration block, a linearization process and a linear separation
process are arranged in this order. Spline nonlinear func-
tions or spline neural networks have been applied to the
linearization process [19], [20]. Furthermore, a maximum
likelihood estimator has been applied [21]. However, sepa-
ration performance is not enough.

In this paper, an approach is proposed, in which a linear
separation process and a linearization process are arranged
in this order. First, the signal sources, which include nonlin-
earity, are separated based on their statistical independency.
In the linearization process, the nonlinear components in
each signal source are suppressed through an iterative learn-
ing algorithm. Simulation using 2-channel speech signals
and 2nd-order nonlinearity will be shown to confirm useful-
ness of the proposed method.

2. CASCADE FORM BLIND SOURCE
SEPARATION

2.1. Network Structure

A proposed cascade form blind source separation (BSS) is
shown in Fig.1. The nonlinear mixture model is the same
as in [19], [20], [21]. First, the signal sourcessi are mixed
through linear combination resulting inuj. After that, they
are transmitted through nonlinear functionsFj resulting in
xj . In the BSS block, a linear source separation process and
a linearization process are arranged in this order. In the con-



ventional methods, they are arranged in the reverse order.
In the proposed method, the number of the observations
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Fig. 1. Network structure of proposed cascade form BSS.

xj are increased from that of the signa sourcessi in order to
increase conditions used in cancelling the nonlinear terms
in the linear separation block. For example,s2, s2

2 ands1s2

are cancelled inz1, ands1, s2
1 ands1s2 are cancelled inz2,

respectively.
If linear separation is complete, its outputszi include

only a single signal source and its nonlinear components.
This nonlinearity is suppressed through the linearization block.

2.2. Example of Linear Separation and Linearization

One example is shown here. Two signal sources and 2nd-
order nonlinearity are used. In this case, four observations
x1 ∼ x4 are required. They are expressed by

x1 = a11s1 + a12s2 + a13s
2
1 + a14s1s2 + a15s

2
2 (1)

x2 = a21s1 + a22s2 + a23s
2
1 + a24s1s2 + a25s

2
2 (2)

x3 = a31s1 + a32s2 + a33s
2
1 + a34s1s2 + a35s

2
2 (3)

x4 = a41s1 + a42s2 + a43s
2
1 + a44s1s2 + a45s

2
2 (4)

The mixing process is assumed to be linearly independent.
Thus, from the above equations, the cross terms1s2 can be
cancelled, and two independent outputsz1 and z2 can be
obtained. They still include the 2nd-order terms2

1 ands2
2,

respectively.

z1 = b11s1 + b12s
2
1 (5)

z2 = b21s2 + b22s22 (6)

Sincez1 andz2 include onlys1 ands2, respectively, they
can be linearized through the following nonlinear functions.

y1 = G1(z1) =
−b11 ±

√
b2
11 + 4b12z1

2b12
(7)

y2 = G2(z2) =
−b21 ±

√
b2
21 + 4b22z2

2b22
(8)

Finaly, the separated and linearized signal sources are ob-
tained.

y1 = c11s1 (9)

y2 = c12s2 (10)

c11 andc12 are some constant.

3. LEARNING ALGORITHMS

3.1. Linear Separation Block

If s1 ands2 are statistically independent, thena11s1+a12s
2
1

anda21s2 + a22s
2
2 are also independent. They can be sep-

arated through the conventional learning algorithms for lin-
ear mixtures. So, the learning algorithm based on likelihood
estimation [22], [23], [24] is employed in this paper.

W (n + 1) = W (n) + η[Λ(t) − ϕ(z(n))zT (n)]W (n)
(11)

η is a learning rate,Λ(t) is a diagonal matrix, andϕ() is a
nonlinear function [18].

3.2. Linearization Block

Transformations in the linearization block are given by Eqs.(7)
and (8). However, in real applications, the coefficientsbij

are not known. So, they should be adjusted through an it-
erative method. Equations (7) and (8) can be expressed by
using two parameters as follows:

yi(n) = −αi

2
±

√
α2

i

4
+

zi(n)
βi

(12)

αi =
bi1

bi2
(13)

βi =
1

bi2
(14)

αi andβi are adjusted through an iterative method.

Error Function:
In this paper, 2nd-order nonlinearity is assumed. Thus, after
the linear source separation, the outputs include 1st-order
and 2nd-order terms of the signal sources. Furthermore, if
we take speech and music signals into account, their average
is almost zero. Therefore, the output average can be used as
a cost function.

Ei(n) =
1
M

M−1∑
l=0

yi(n − l) (15)



The gradient descent algorithm is used for adjusting the pa-
rameters.

αi(n) = αi(n − 1) − η
∂Ei(n)
∂αi(n)

(16)

βi(n) = βi(n − 1) − η
∂Ei(n)
∂βi(n)

(17)

∂Ei(n)
∂αi(n)

=
1
M

M−1∑
l=0

∂yi(n − l)
∂αi(n)

=
1
M

M−1∑
l=0

(−1
2
± αi(n)

4
(
α2

i (n)
4

+
1

βi(n)
z(n − l))−

1
2 ) (18)

∂Ei(n)
∂βi(n)

=
1
M

M−1∑
i=0

∂yi(n − l)
∂βi(n)

=
1
M

M−1∑
l=0

(∓z(n − l)
2β2

i

(
αi(n)2

4

+
1

βi(n)
z(n − l))−

1
2 ) (19)

Porality Control
In the above update equations, there is a freedom of polar-
ity. It should be judged which polarity should be used. For
this purpose, the following conditions are introduced. These
conditions do not lose generality in real applications.

1. A linear component is greater than a nonlinear com-
ponent.

2. The signal source level is limited. Say, for instance
|si(n)| < 1.

Under these conditions, in the linear separation output,

zi(n) = bi1si(n) + bi2s
2
i (20)

the following inequality is always held.

|bi1si(n)| > |bi2s
2
i (n)| (21)

This means the porality ofzi(n) is equal to that ofbi1si(n).
So, except for the polarity ofbi1, that of the outputyi(n)
can be controlled so as to be the same as that ofzi(n). The
polarity of bi1 does not affect separation performance. Be-
cause in blind source separation, constant scaling inherently
remains.

3.3. Combination of Both Learning Algorithms

In the proposed method, first the linear separation block is
trained. After convergence, the linearization block is ad-
justed. This separate training is stable.

3.4. Comparison with Conventional Methods

Nonlinear BSS methods have been proposed in [19],[20],[21].
In these methods, the linearization block is used before the
linear separation. However, linearization of the mixed sig-
nals including the cross terms, likes1s2 is difficult. Further-
more, a simultaneous learning for both signal separation and
linearization is unstable. In the proposed method, the lin-
earization block is used after the linear separation. Let the
mixed signals be expressed with high-order polynomial, the
signal sources, including high-order components of them-
selves likesi ands2

i , can be separated through the linear
separation process. In other words,s2

i is still independent
on thesj , i �= j components. Since the cross terms are not
independent, they can be suppressed through the linear sep-
aration process. After that, the linearization in each signal
source is easier than that for the mixing signals with nonlin-
earity.

Although the proposed method is limited to 2nd-order
nonlinearity, it can be extend to 3rd-order nonlinearity. In
this case, network becomes complicated. Since in a wide
range of application fields, order of nonlinearity is mainly
up to 3rd-order, this limitation of order does not lose gener-
ality.

4. SIMULATIONS AND DISCUSSIONS

4.1. Simulation Conditions

Two signal sources and four observations are used. The sig-
nal sources are male speech signals. The mixing matrix is

A =




1 −2
−3 2
2 −1
1 2




The learning rate isη = 0.001. The nonlinear functions in
the mixing block are

F1(u) = u + 0.4u2

F2(u) = u + 0.2u2

F3(u) = u − 0.6u2

F4(u) = u + 0.3u2

4.2. Linear Separation

The parameterswji are trained by the learning algorithm
described in sec.3.1. The learning curve is shown in Fig.2.
The vertical axis indicatesSNR in dB, the horizontal axis is



the number of update iterations.SNR is defined as follows:

σ2
s =

2∑
i=1

power ofsi in zj,

wheresi is dominant (22)

σ2
n =

2∑
j=1

power ofzj exept forsi,

wheresi is dominant (23)

SNR1 = 10 log10

σ2
s

σ2
n

(24)

σ2
s =

2∑
i=1

power ofsi ands2
i in zj ,

wheresi is dominant (25)

σ2
n =

2∑
j=1

power ofzj exept forsi ands2
i ,

wheresi is dominant (26)

SNR2 = 10 log10

σ2
s

σ2
n

(27)

In this figure, bothSNR1 andSNR2 are shown with a solid
line and a dashed line, respectively. In the linear separation
process, the 2nd-order componentss2

i are not suppressed,
because they are also independent components againstsj

ands2
j , i �= j. So, SNR2 has some meaning. The final
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Fig. 2. Learning curve for output of linear separation block.
SNR1 and SNR2 are shown with solid line and dashed
line.

z1(n) andz2(n) are shown below.

z1 = 5.28s1 − 1.19s2 + 6.05s2
1 − 1.66s1s2 + 3.88s2

2

z2 = −0.21s1 + 7.0s2 − 0.03s2
1 + 1.94s1s2 + 3.92s2

2

In z1(n) andz2(n), s1(n) ands2(n) are extracted, respec-
tively. In z1(n), s1(n) ands2

1(n) remain. On the other hand,
in z2(n), s2(n) ands2

2(n) are dominant. In both outputs, the

interferences, that is,s2, s2
2 ands1s2 in z1, ands1, s2

1 and
s1s2 in z2, are reduced.

4.3. Linearization

Error valuation
In this process, separation performance is also evaluated by
SNR1 defined by Eq.(24). In the simulation, thesi compo-
nent and the other components are discriminated as follows:
In the linearization block,zi(n) is linearized through

yi(n) = −αi

2
+

√
α2

i

4
+

zi(n)
βi

(28)

Let√
α2

i

4
+

zi(n)
βi

=
√

ais2
i (n) + bi(n)si(n) + ci(n) (29)

Furthermore,√
ais2

i (n) + bisi(n) + ci(n) = disi(n) + ei(n)(30)

ais
2
i (n) + bisi(n) + ci(n)

= d2
i s

2
i (n) + 2disi(n)ei(n) + ei(n)2 (31)

Comparing the coefficients, the following relations are ob-
tained.

d2
i = ai (32)

2diei(n) = bi(n) (33)

e2
i (n) = ci(n) (34)

ai andci(n) are calculated usingαi, βi andzi(n) at each
sample.SNR is evaluated by

SNR1 = 10 log
p(n)
q(n)

(35)

p(n) =
1
M

M−1∑
i=0

(yi(n) +
αi

2
− ei(n))2 (36)

q(n) =
1
M

M−1∑
i=0

(−αi

2
+ ei(n))2 (37)

The learning curves for both the linear separation and the
linearization processes are shown in Fig.3, with a solid line
and a dashed line, respectively.SNR meansSNR1. SNR
after the linearization improved by15dB compared with
that after linear separation. Approximately,SNR1=30dB
is guaranteed, which is good separation performance.

4.4. Waveforms

Figures 4, 5 and 6 show waveforms of the speech signal
sources, after the linear separation and the linearization, re-
spectively. In Fig.4, the upper and the lower ares1 and
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Fig. 3. Learning curve for output of both linear separation
and linearization blocks with dashed line and solid line, re-
spectively.SNR meansSNR1.

s2, respectively. In Figs.5, 6, the upper and the lower are
z1(n) andy1(n), andz2(n) andy2(n), respectively.s1(n)
and s2(n) are extracted inz1(n) and z2(n), respectively.
The polarity ofs2(n) is reversed. The waveforms after the
linear separation and the linearization are almost the same.
However,SNR is slightly improved after the linearization.

5. CONCLUSIONS

In this paper, a blind source separation method has been
proposed for instantaneous nonlinear mixtures. It consists
of the linear separation and the linearization in a cascade
form. Both blocks are separately trained. The conventional
learning algorithm of linear mixtures can be used for the for-
mer block. The new learning algorithm has been proposed
for the latter block. Nonlinearity in the mixture is assumed
to be 2nd-order. Simulation, using two speech signals and
2nd-order nonlinearity, shows usefulness of the proposed
method.
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