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ABSTRACT

A new adaptive threshold method is proposed for an associative memory using
mutually connected neural network. In a learning process, the network state,
that is the unit state ui(m), is fixed to a pattern P(m) to be memorized.
Connection weights are iteratively adjusted so that the unit input satisfies
vi(k)2 8 for ui(m)=1, and vi(k)<-6 for ui(m)=0. In an assoclation process, P(m)
is recollected from its degraded version Q(m). The network state is initially"
set to be Q(m). At the nth state transition step, if vi(n)= ¢ (n), then u;(n+1)=1.
If vi(n) £-¢ (n), then ui(n+1)=0. Furthermore, if -¢ (n) < vi(n)< ¢ (n), then
ui(n+l)=ui(n). ¢ (n) is initially chosen to be ¢ (0)> 6, and is gradually
decreased as ¢ (n)=¢ (0)-an, where a is constant. Computer simulation was car-
ried out, using 51 and 153 patterns, which appear on a key board. A neural
network has 16x16=256 units and full connections. The results demonstrate that
drastic improvements in a memory capacity and association rates can be
achieved. For example, an association rate for 51 patterns with 40 noises has
been increased from 12.2% to 97.7%, compared with a single threshold method.

I INTRODUCTION

An associative memory is one of useful applications of artificial neural
networks. One approach is to memorize patterns on equilibrium states of a mu-
tually connected neural network. Connection weights are adjusted so that
equilibrium states express the patterns. Conventional methods for adjusting
connection weights include auto-correlation methods and orthogonal methods
[1]-[6]. These methods, however, assume symmetrical connection weights, and
are effect only for lineally independent patterns and orthogonal patterns.
Therefore, a memory capacity for arbitrary patterns is strictly limited. By
assuming asymmetrical connection weights, and by adjusting connection weights
through a Hebb rule, for instance, a memory capacity can be improved.
However, when the patterns are degraded by noise or obstacles, association
rates are significantly decreased.

This paper focuses on improvements in a memory capacity for arbitrary pat-
terns and an association rate for degraded patterns. For this purpose, new
learning and association methods, employing hysteresis threshold levels are
proposed. In a learning process, a fixed hysteresis threshold is employed in
order to obtain noise margin [7). In an association process, an adaptive
hysteresis threshold is employed, In order to suppress error propagation. Dis-
cussions on a memory capacity and an association rate are provided. In order
to confirm efficiency of the proposed method, computer simulation is



demonstrated. Two sets of memory patterns, including 51 and 153 patterns, are
employed. A mutually connected neural network, having 16x16=256 units and
full connections, is used.

II A LEARNING METHOD

The connection weights are adjusted so as to store the patterns on the
equilibrium states. A connection weight from the ith unit to the jth unit is
denoted by w:;. A self-loop w,; is not used. A unit takes 2-levels states, that
is, 1 and 0. The state of a unit is also called 'output' in this paper.
(1)Initial guess:

All connection weights are initially set to be zero.

W|3(0)=0. léi,J§N (1)

(2)Network state:

The network state is fixed to a pattern P(m) to be memorized. In other words,
the unit states are not changed regardless of the inputs.

(3)Ad justing connection weights:

Let the state of the jth unit for P(m) be u,(m), and the input at the kth ad-
justing step be v;(k). In order to obtain enough noise margin, the input is re-
quired to satisfy vi(k)= 6 for u;(m)=1, and v ;(k)<-6 for u,;(m)=0. Figure 1
shows this relation. The input v;(k) should locate in the shaded portion,
according as u;(m). This hysteresis threshold can provide not only a noise
margin but also ability of detecting the correct state of units in degraded
patterns. The latter property will be
discussed in Sec.1V. u

The connection weights are up-dated by

m) =0

wis(k+1) = wiy(K) + Awg(k) (2) -6 0 0 v (k)
Fig.1 Regions of the input v;(k) for

Based on the above idea, the change u;(m). in a learning process.

Aw;i(k) is determined as follows:

N
vs(k)=l§1w”(k)u;(m), w;y=0 (3)

i) For u;(m)=1, if v;(k)= 6 then Aw,;(k)=0 (4a)
if vy(k)< 8 then Aw;;(K)=Aw (4b)
ii) For u;(m)=0, if vy(k)<-6 then Aw;;(k)=0 (5a)
if vy;(k)>-6 then Awy (k)=-AwW (5b)

provided that Aw>0 and u;(m)=1. Aw;; is always zero for u;(m)=0, regardless of
u;(m). All connection weights are changed simultaneously for one pattern P(m).
(4)The above process (3) is repeated for all patterns P(1)~P(M). This process is
counted as one learning step.

(5)The above processes (3) and (4) are repeated until A w;;(k) becomes zero for
all patterns and for all units. Aw Is gradually decreased during a learning
process, in order to avoid any vibration.



Il MEMORY CAPACITY

A memory capacity of an associative memory is usually evaluated by a ratio
of the numbers of memory patterns (M) and of units (N), that is, M/N. By em-
ploying asymmetrical connection weights, a memory capacity can be increased.
It is, however, very difficult to derive a general formula for a memory
capacity. Because, it is highly dependent on cross-correlation among the
patterns. Therefore, in this section, the critical patterns are provided.
Proofs are omitted due to a page limit. P(m) is used as a set of units, whose
state is 1, in the following.

(HIf P(1)UP(2)-P(1)NP(2)=1 unit, (6)
then P(1) and P(2) cannot be memorized simultaneously.
(2)If P(1)UP(2)-P(1)NP(2)=2 units, (7)

then P(1) and P(2) can be memorized simultaneously.
(3)Let u; and u= express the 1st and 2nd units.

If u,=P(1)N{P(1)UP(2)-P(1)NP(2)} (8a)
u==P(2)N {P(1)UP(2)-P(1)NP(2)} (8b)
P(3)={ui,uz} (8¢)

then P(1), P(2) and P(3) cannot be memorized simultaneously.

(4)Under the condition (3), if P(3) further includes another unit us, besides u,
and usz, then P(1), P(2) and P(3) can be memorized simultaneously.

(5)By combining the patterns, satisfying the conditions (1) and (3), more
complicated prohibitory sets of patterns can be generated. In other words,
prohibitory patterns can be detected using the conditions (1) and (3).

Examples of patterns corresponding to (1)~(3) are shown in Fig.2.
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Fig. 2 Examples of patterns satisfying (3)

conditions (1), (2) and (3).

In a real world, however, patterns satisfying the conditions (1) and (3), seem
to be limited. So, basically speaking, a mutually connected neural network,
with asymmetrical connection weights, can memorize a large number of
patterns. Another problem for a large memory capacity is a probability of
recollecting the memorized pattern from its degraded pattern. This will be
discussed in in the next section.

IV AN ASSOCIATION METIOD
A. Adaptive HOysteresis Threshold

In an association process, the memorized pattern P(m) is recollected from its
incomplete pattern Q(m), which is degraded by random noise and obstacles.



Q(m) = P(m) + E (9)

where E represents errors. The network state transits following

N
vi(n) = Twyus(n), wy =0 (10)
{==1

u;(n+l) = f(v;(n)) (11)

where v;(n) and u;(n) are the input and output of the jth unit at the nth state
transition step. f() is a nonlinear function.

In the above state transition, the errors propagate and spread over the
whole network. As a result, the network state easily falls into undesired
equilibrium state. So, it is very important to suppress the error propagation.

The idea behind adaptive hysteresis threshold is to use only the correct in-
formation about the state of units. Accuracy of the states can be evaluated
using the unit inputs. Because they are adjusted to satisfy ether v;(k)=86 or
vy;(k)<-6, in the previous learning process. Thus, the state of units, whose
input satisfies ether v ;(n)= ¢ (n) or v,;(n)=<-¢ (n), could be ether us;(n)=1 or
u;(n)=0, respectively. ¢ (n) is a threshold level at the nth network state
transition step. It is determined as follows: Since errors quickly spread over
the network, accuracy of the states, which are used in the early stage, has
strong effect on the convergence route, namely, the final destination.
Therefore, the initial threshold ¢ (0) is chosen to be larger than 6. In the
resulting equilibrium state, however, the requirements for the inputs are
ether vi(k)= 6 or vy;(k)<-60. Therefore, ¢ (n) is decreased from ¢ (0) to around
0 step by step during the association process.

B. Association Process
Based on the idea, mentioned above, the following association process Is

proposed.
(1)Initial State:

The network state is initially set to the degraded pattern Q(m).
(2)Network State Transition:

The network state transits following Egs.(10) and (11). A nonlinear function
f() has the following hysteresis threshold levels.

If v;(n)= ¢ (n) then u;(n+l)=1 (12a)
If v;(n)<-¢(n) then u;(n+1)=0 (12b)
If -¢ (n)<vs(n)< ¢ (n) then us(n+l)=u,(n) (12¢)
The above unit state transition is u;(n41)=0 | uj(ntl)=u;(n) | uj(n+1)=1

illustrated in Fig.3. ¢ (n) is grad-
ually decreased during the associ- |

ation process as follows: '.¢ (n) 0 ) '¢ (n) Vi (n)
Fig.3 Unit state transition according as
¢ (n)=¢ (0)-an (13) ~v;(n), in an association process.

¢ (0) is chosen to be larger than 8. a is constant.
All units simultaneously change their state following Egs.(12a)-(12c). This



process is repeated until the network state does not change any more, namely,
it arrives at an equilibrium state. This state represents the associated
pattern.

V SIMULATION

A mutually connected neural network, having 16x16=256 units and full con-
nections, is used. Two sets of patterns, including 52 and 154 patterns, are
evaluated. One of them includes alphabet(52). The other set includes
numbers(10) and the Japanese syllabary (92) in addition to the former set.

The patterns are degraded by random noises. Noises are generated by
reversing the state of units, which are randomly selected. The number of
noises is 40. One hundred sets of random noises are used to evaluate statistic
association rates for all patterns. Examples of the memorized patterns and
their degraded version are shown in Fig.4.

1

Fig. 4 Examples for patterns to be memorized,
and their noisy patterns, with 40 noises.

The threshold level 6 in the learning process is chosen to be 30. Change of
connection weights Aw is gradually decreased as 1, 0.5, 0.2, 0.1, for every 50
learning steps. The threshold in an association process is varied as ¢ (n)=¢
(0)-n. The initial value ¢ (0) is chosen to be 100. Furthermore, a single
threshold method, using 6 =0 and ¢ (n)=0, and a semi-hysteresis threshold
method, using 6 =30 and ¢ (n)=0, are also evaluated for comparison.

Association rates are listed in Table 1. In two pattern sets, since alphabet
patterns I and fli correspond to the prohibitory patterns given by (1) in
Sec.l, 'I: cannot be memorized. So, it is omitted in the following. Method I
is the single threshold method. Method 1 is the semi-hysteresis threshold
method. Methodll is the proposed one. In this table, the numbers indicated by
*2, *3 and =4 represént association rates(%), that is, probabilities of
recollecting the original pattern, another memorized pattern and
non-memorized patterns, respectively. Let association rates for them from Q(m)
be p(m), p'(m) and r(m), respectively. They are calculated using one hundred



sets of random noises. For instance, letting the number of the equilibriurﬁ
states, which represent P(m), be Nem, p(m) is given by Np o /Nr (x100%), where
Ngr is the number of the random noise sets. Furthermore, data listed in Table 1

are calculated as follows:
Table | Association rates(%) for noisy patterns.

1 M
Upper(#2): p = —M—-mz_jp(m) (14a) Patterns *! |51 Patterns [ 153 Patterns
) 1M Noises 40 40
Middle(#3): p' = —l;fmz_]p'(m) (14b) 6 =0 12.2 -2 0.2
L ™ I ¢ (n)=0 13.7 *3 0.4
Bottom(#4): r = "IVT.,\)E, r(m) (l4c) 74.1 *4 99. 4
. 0 =30 82.5 1.5
Although Method 1 can memorize | é (n)=0 8.9 1.8
all patterns, association rates 8.6 90. 17
for noisy pattens are very poor. 6 =30 97. 1 64.5
On the contrary, by employing m| & (n)=¢(0) 1.3 0.6
the hysteresis threshold only in - n 1.0 34.9
the learning process, association %1 An alphabet pattern 1] is omitted.
rates (#2) for the original pat- %2 Original pattern, #3 Another memorized
terns can be significantly improved pattern, ¥4 Non-memorized pattern.

from 12.2% to 82.5% for 51 patterns.

However, in the case of 153 patterns, the proposed method (Methodll) is very
effective compared with Method . Thus, it can be confirmed that the proposed
method is very useful both in association rates for noisy patterns and a

memory capacity.

VI CONCLUSION

A new adaptive hysteresis threshold method has been proposed for an asso-
ciative memory using a mutually connected neural network. Computer simula-
tion has demonstrated that the proposed method can provide drastic improve-
ments in association rates and a memory capacity. For example, an association
rate for 51 patterns with 40 random noises can be Increased from 12.2% to
97.7%.
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