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Abstract

We present a new extension of the Backpropagation leamning algorithm by using interval
arithmetic. The proposed algorithm represents a generalization of Backpropagation and contains
Backpropagation like a particular case. This new algorithm permits the use of training samples and targets
which can be indistinctly points and intervals. A

Among the possible applications of this algorithm, we report its usefulness to integrate expert’s
knowledge and experimental samples and also its ability to handle "don't care attributes” in a simple and
natural way in comparison with Backpropagation. It also adds flexibility to the codification of inputs and
outputs.

1.- Introduction.

Backpropagation with Multilayers Neural Networks was one of the first successful neural networks
training paradigms [1] and it is also one of the most used nowadays.

There have been many modifications of this training algorithm. One of the useful ones, under the
point of view of the authors, is the extension to interval arithmetic proposed in [2]. Interval arithmetic [3]
allows Backpropagation to combine real vectors and interval vectors as training samples and targets for
aneural network. In this way an interval at the input of the neural network is converted to another interval
at the output.

However, a quite severe limitation of the algorithm proposed in [2] is that it has only one output
unit and can only be applied to classification problems with two classification classes. Furthermore, it does
not constitute a generalization of Backpropagation because of the definition of its cost function.

In this paper we propose a new and direct extension of Backpropagation to interval arithmetic
which is called Interval Arithmetic Backpropagation (IABP). This new algorithm can be used with any
number of output units, every equation reduces to the equations of Backpropagation for the case of a real
vector input and under this point of view JABP can be considered a generalization of BP.

We show that this algorithm can integrate expert’s knowledge and training samples in the training
set in the same way of [2] and we also show that it can handle "don't care attributes” in a very simple

fmd advaptageops way in comparison with Backpropagation [4]. We finally discuss that the use of
intervals in the input can add flexibility to the codification.
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2.- Interval Arithmetic Backpropagation.
The basic equations of interval arithmetic (2,3] which are useful in the following development are:
Sum of intervals:
A+ B = (af, aY] + [(bL,bY] = [al+bt, aV+bY)
Product by a real number: m-A=m- (al, a"] = (ma*,ma") , if m20

- maY, mat] , if m<0
Exponential function: [ ]

exp A = exp (a*,aY] = {exp a*,exp aY)
The superscript L denotes the lower limit of the interval and the superscript U the upper one.
Now, we will define a generalization to interval arithmetic of the neuron transfer function:
f(Net) = f([nett, netY)) = [f(net®),f(nect¥)] -

where: 1
e = )
This definition is consistent because f(x) increases monotonically. Next, we will define the
relationships in the neural network.
The input patterns will be, in general, interval vectors: L v
I, ; = [Ip,5.1p,4]
The output of the hidden units:

Ninputs
H, ; = f(Net, ;) where: Netp ;= Y. w;;Tp; *8;
23l
and: Ninputs Nioputs v
L _ L
netz ;= 3, wiiIni* 3 wiales *8;
I=1,wy 420 dad,wy 4<0
Ninputs Ninpucs L
U _ U
Detp,j- E wj,iIP,i + E Wj,jIP,j +eJ
i=1,wy 420 =1, wy ;<0

The outputs of the neural network are defined in the same way for the weights w, ,.

The targets will also be, in general, interval vectors:

Tp k = [Cék/ C}:{k]

’

And the mean square error function can be defined as a generalization of the BP error function:

1 Noutputs
Ep=3 Y (EF .08 x) 2+ (tp,x70p ) )
k=1
The leamning in IABP is the process of minimizing the above error function, the wexghts are

changed according to the following function: 3z,

aw; ;(t+1) =1 - (—a » 1) + P s awy ;(E)
where 7 s the step size and B the momentum. The partial derivatives can be calculated as in
Backpropagation. The result for the weights between the hidden units and the output is the following: .

OE, _ |85k Hp,: * 8p,x Hp,s + 1f wy ;20
- LU v o :
Wki |0p,k Hpi * Op,x Hp,i o 1E Wy ;<0
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2t 85.x = 1 (F,x=Of k) Orx (1-074)
. 8%.x = -5 (t84-08,) Of (108,
s And for the weights between the hidden units and the input:
T
- 3E, |8h%, JI, ;+6hg JIP i 1f wy ;20
l.:,': BW],J 6hp JIP 1+6hp jIp 1 ,lf W
where L .
Ui Shp, ;=( E 6p,k‘Wk,J Z 69 kW, J) HP] (1 HP,J)
o k, vy 320 k, v, 4<0
8hp 5= ( E ég.k'“’k,j + Z 6P,k‘wk,j)'HPU.j'(l-Hpu,j)
K, wy 420 k, Wy, 440

- The percentage correct error function can also be defined for classification problems. A possible

deﬁniuon with threshold 0.5 is: suppose the target for a pattern P
is: ’I‘—[l 1] and T;=[0,0] fori # j and i=1...Noutput. 'I'hen this
pattern should count positively in the percentage if Op ;- ;205
and 05" <05.

l 3.- Experimental results.

! We present three bidimensional examples, Figs.1, 2, 3.
The example in Fig.l1 corresponds to a mixture of real and
interval vectors in the training set, the real vectors are codified as
clbsed interval vectors with only one point inside each interval,
Table 1. In Fig.1 it is represented the training samples and a line
which represents the threshold 0.5 of the output units, i.e.,
the achieved classification. This result corresponds to a neural
fetwork with 2 output units, 5 hidden units and 2 inputs. The
example in Fig.2 corresponds to the results of a neural network
with 2 inputs, 7 hidden units and 3 outputs, the training set is
composed of interval vectors which are represented in the figure
by rectangles. Finally, example 3 corresponds to a neural network
with 2 inputs, 8 hidden units and 5 outputs. The input set is the
same of example 2, but the classification classes are different.

It is achieved a perfect classification of the training set in
all the examples.

3 1.- Integration of expert s knowledge and sample data.

The kind of expert's knowledge considered is a set of
Mif L.then” rules like the following one:

“if Xp, < [A, B} ...and X; , € [A, .B,] then X, e G
where X, is a pattern vector and Gy its classification class.

This type of rules can be easily codified by using interval
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Fig. 1. Example 1, classification.
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arithmetic, the set of intervals {A; ,B;] will be used like the input
of the neural network {(A, .B,], [A;, B,] ... [A, .B,]} and the
corresponding target will be the codification of the class G,. After
that, this kind of intervals can be included in the training set
together with sample data, a clear example is example 1.

32.- Handle of "don’t care attributes".

The definition of a "don't care attribute” and a research
in the codification for normal BP in the case of discrete inputs

8 12
E] Class

Fig2. Example 2, classification.
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can be found in {4]. Table 2 corresponds to the second example in that paper. Suppose we have thew

sample vector: [1, D, D, D, D, -1] (last row in Table 2) where D means "don’t care” or in other words
"whatever the value of” this input. According to the results in (4], for normal BP we should include in
the training set all the vectors which result from codifying D with all its possible values or with two
values: the maximum possible value d_,, and the minimum one d_;,. This yields to an exponential increase
in the training set if we have more than one D in a vector. In the case of the last sample vector, we should
use’'81 training samples if we codify it with all its possible values and 16 if we codify with the maximum
and minimum value. With interval arithmetic we can codify D like an interval (d_;..dg.,). the resuit is only
one training sample and this approach is valid for the discrete and the continuous case. We havew
reproduced the best result obtained in {4] for the three examples used there (IS1, IS2 and IS3) by using
an interval arithmetic codification of the "don't care attributes” and IABP. The training set in our case
was smaller and also the number of hidden units of the neural network.

Table 1. Training set of example 1.

20
ass. Training Samples. Target S $992 I Y
C1X | (44 [8.8] (11,11] (13,13] [13,13] [0.10] [1.0] 16 °oooe )l
ClY |nLIOLI B3] (66 [10.10] [0.10] {1.0) T
C.2.Y [(14,14] (15,15) [2,2] [4,4] (15,15] [0,20] [16,20] {0,1) ']- ™) ':q
C2X | [2.21 [6.6) [14.14]) [15.15] [15.15] [16.20] {0.20) [0.1} 12 1 jss 18
P — . —— - —————— 1 s s
Table 2. Training instances 1S2. 8 1 18Y
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4.- Conclusion and Discussion.

We have generahzcd the BP training algorithm to interval arithmetic and we have shown two posmble

applications of this new algorithm: integration of expert’s knowledge and sample data and the handle of

"don’t care attributes”. In general, this algorithm will add flexibility to the codification of inputs and targets.

For example, in the case we have a strong subjectivity and imprecision (e.g., the codification of symptoms

in a medical diagnosis classification problem) the use of intervals in the codification may reduce this

subjectivity and imprecision, an imprecise or subjective input could be codify with a wider interval.

Perhaps, it would be a more appropriate way to codify these cases
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