A Multilayer Neural Network with Nonlinear Inputs and Trainable
Activation Functions: Structure and Simultaneous Learning
Algorithm

Kenji Nakayama

Akihiro Hirano

Isse1 Ido

Dept. of Elec and Comp Eng., Kanazawa Univ., 2-40-20, Kodatsuno, Kanazawa, 920-8667, Japan
E-mail:nakayama@t.kanazawa-u.ac.jp

Abstract

Network size of neural networks is highly dependent on ac-
tivation functions. A trainable activation function has been
proposed, which consists of a linear combination of some ba-
sic functions. The activation functions and the connection
weights are simultaneously trained. An 8 bit parity prob-
lem can be solved by using a single output unit and no hid-
den unit. In this paper, we expand this model to multilayer
neural networks. Furthermore, nonlinear functions are used
at the unit inputs in order to realize more flexible transfer
functions. The previous activation functions and the new
nonlinear functions are also simultaneously trained. More
complex pattern classification problems can be solved with a
small number of units and fast convergence.

1. Introduction

In designing neural networks, fast learning, high probability
of convergence and small network size are very important.
They are highly dependent on network models, learning al-
gorithms and problems to be solved. The transfer function
from the inputs to the unit output also plays a very impor-
tant role in this issue.

Many pruning methods for hidden units have been pro-
posed [1],[2]. A method, which combine processes of se-
lecting activation functions and pruning hidden units, was
proposed for multilayer neural networks [3]. Effective ac-
tivation functions can be selected, with which the number
of the hidden units is well reduced. This method, however,
belongs to the pruning methods. Thus, a relatively large
number of hidden units are required at the beginning of
learning. Several kinds of activation functions have been
used, and their comparison has been discussed [4], [5]. Fur-
thermore, some learning methods for activation functions
have been proposed [6]-[8]. However, trainable properties of
the functions are rather limited.

A trainable activation function has been proposed,
which consists of a linear combination of some basic func-
tions [9]. This activation function is trained together with
the connection weights by the gradient descent algorithm.
An 8-bit parity check problem can be effectively solved.
Since this approach employs linear connection weights, a
transfer function from the inputs and the output of the unit
is rather limited.

In this paper, we further develop the previous method
to have a nonlinear function at the unit input. Its coef-
ficients are trained together with the previous activation
functions. Computer simulation using several pattern clas-

sification problems will be demonstrated to confirm useful-
ness.

2. Network Architecture
2.1 Network Equations

Although the proposed nonlinear input-functions and train-
able activation functions can be applied to any network
structures, multilayer neural networks are taken into ac-
count in this paper. The two-layer neural network is con-
sidered.

Input patterns:

x=[z0,z1,...,zI]T, z0 =1 (1)

Hidden layer:

Whj = [whjo,whjl,...,whﬂ]T (2)
Un; = gn;(X, Why) (3)
ynj = fnj(uny) (4)

Output layer:

Yo = [yhﬁayhla“'ath]Ta Yno =1 (5)
Wi = [Wko, Wk, - wa]T (6)
uk = gr(yn, W) (7)
ye = fr(ur) (8)
gn;() and gx() are nonlinear functions, and f;() and fx()

are activation functions.
2.2 Activation Functions

The trainable activation function proposed in [9] is de-
scribed here for convenience. A composite form activation
functions are used, which combine several basic functions.
A sigmoidal function is used as the basic function. The rea-
son why the sigmoidal function is selected is the following.
The Gaussian and sinusoidal functions can be composed of
several sigmoidal functions. However, the reverse approxi-
mation requires a large number of the Gaussian and sinu-
soidal functions.

The proposed activation function is expressed in Eq.(9),
which is a linear combination of several sigmoidal functions.

y=f(u)=z{l+;ﬁ+dl} (9)

This activation function includes four parameters a;, b;, ¢
and d; in each basic function. Thus, 4L free parameters are
used in one activation function. They will be optimized to-
gether with the nonlinear functions.

3. Nonlinear Input Function

3.1 Transfer Function

In the case of the hidden units, the transfer function from
the inputs x = [2¢,21,...,z7]7 to the unit output ys; is
given by Egs.(3) and (4). Now, letting %o be some constant
of up;, it has the same value on the hyper-plane given by

U0 = Ghj (xa Wh]) (10)
On this hyper plane, yn; also has the same value given by

Yo = fny(uo) (11)

Thus, the shape of the hyper-plane in the /-dimensional z-
space and the curve of the activation functions determine
the transfer function from x to ys;.

The input potential up; in the previous work [9] is the
linear combination of the inputs. This causes some limita-
tion on the relation between the inputs and the output of
the units.

3.2 Polynomial Function

What kinds of nonlinear functions are useful is highly de-
pendent on learning algorithm. It is very important to op-
timize the nonlinear functions together with the activation
functions in a simple way. For this purpose, we introduce a
high-order polynomial function. One example for Eq.(3) is
shown here.

2 2
Uhj = Whjo + Whj1Z] + WhjoT1Z2 + WhjzTs (12)

This nonlinear function is a linear combination of the coeffi-
cients to be optimized. This will derive an efficient learning
algorithm.

Generally, we express the polynomial function as follows:

i
thﬂ'ii (13)
i=1

;
> wiying (14)
j=1

Up; =

Uk =

&; and §n; include high-order terms of z; and yp;. fand J
are the number of the terms in the polynomial functions.
Examples Examples for the linear combination and the
2nd-order polynomial are shown here.

Linear Combination:

Uhj = Who + Wh1Z1 + Wh2T2 (15)
Second-order Polynomial:

2 2
Uhj = Who + WhiZ1 + Wh2¥] + WhaT2 + Whals (16)

Contour lines are shown in Figs.1 and 2. As previously
described, up; and then y,; takes the same value on the
same contour. In Fig.1, the up;-axis is shown with a dashed
line. The activation function f,;(un;) has its own shape on
this axis.

X
“s,

u axis

Fig. 1. Contour lines for linear combination.

M

Fig. 2. Contour lines for 2nd-order polynomial.

3.3 Network Structure

Based on the previous discussion, we propose a multilayer
neural network, which includes the polynomial input func-
tions and the trainable activation functions, as shown in
Fig.3. The nonlinear blocks generate the high-order terms
of x. Furthermore, by passing the high-order terms through
the linear combination part, the polynomial is composed.

4. Simultaneous Learning Algorithm

4.1 Learning Algorithm

The proposed learning algorithm is based on the gradient
descent algorithm, which minimize the mean squared error.
Letting dj be the target for the output yx, the mean squared
error is given by,

K

R DT (17)

k=1

Furthermore, let p(n) be parameters of the activation func-
tions and the connection weights, where n is the iteration

Output
Layer

Hidden
Layer

Input é é
Layer

Fig. 3. Proposed network structure with polynomial inputs and
trainable activation functions.

number. p(n) is updated as follows:

e+ 1) = pln) = s (19)

7 is a learning rate. Furthermore, the correction is denoted
as follows:

p(n+1) = p(n) + Ap(n) (19)
Due to the page limitation, the correction terms Ap(n) are
summarized in the following.
Activation functions in output layer:

Aar(n) = nbpdri +alag(n —1) (20)
Abgi(n) = nbrap(n)urdr(l — drr)
+aAby(n—1) (21)
Acp(n) = nbrar(n)dr(l — dr)
+aAck(n —1) 22
Adri(n) = 0k + alAdu(n—1) 23

o = ¢(br(n)ur + cri(n)) 25
1
14+e*

(22)
(23)
b = di(n) —yx(n) (24)
(25)
(26)

d(z) = 26

akt, bri, ¢k and dy; are the parameters in fx(). o is a
learning rate of the momentum term.
Connection weights from hidden layer to output layer:

L

Awgj(n) = nbrin; Z[akl(n)bkz(n)¢k1(1 — ¢r1)]
=1

+aAwgj(n—1) (27)

Activation function in hidden layer:

Aaj(n) = 5dj
Y [6kwe; Y (ar(n)bi(n)dr (1 — ér1)]

+alAaj(n—1) (28)

¢ = S(bjt(n)unj + cji(n)) (29)

K

Abﬂ(n) = 77“]1th¢]1(1 — ¢JZ)Z[6kwkj

k=1
L
.Z(akzbk1¢kz(1 — ¢n)]
=1
+aAbj(n —1) (30)

K

naji(n)gsi(l = ds) Y _[6wi,

k=1

Acj(n) =

L

) Z axt(7)bri(n)Pri (1 — b))

+alAcy(n —1) (31)

K
Adji(n) = g Z[‘Skw’”
k=1

L

Z art(n)br(n)dri(1 — drr)]
1=1
+aAdji(n —1) (32)
aj1, bji, c;i and dj; are the parameters in fp;().
Connection weights from input layer to hidden layer:

L

Awnyi(n) = 1d: Y an(n)bu(n)éyi(1— éy1)

=1

.Z[&kwkj Z apr(n)bri(n)Pri (1 — i)
—f-;Awh”'(n _ 1) (33)

4.2 Acceleration of Learning Process

When the linear part of the sigmoidal functions locate out
of the interest regions, derivative of the sigmoidal functions
becomes very small, resulting in very slow convergence. Fur-
thermore, if the linear part of several basic functions locate
at the same place, they cannot be effectively used to ap-
proximate some functions to be realized. In order to use
all the basic functions effectively, the control methods have
been proposed [9].

5. Simulation Results

5.1 Example 1: Ring in Square

Figure 4 shows a ring in square problem. The data in the
ring are classified into a class €y, and the others into a
class C>. This figure shows the targets for the outputs.

output

Fig. 4. Ring in square problem.

0.8
0.7
0.6
0.5
@
@
E 04
0.3
0.2 W \\
0.1
0
0 50 100 150 200 250 300 350 400
epoch

Fig. 7. Learning curve by using proposed method.

the 1st and 2nd hidden units are shown in Figs.10 and 11.
Combining them, the outputs of the 1st and 2nd hidden
units are obtained as shown in Figs.12 and 13. Finally, they
are combined at the output unit resulting in the final out-
put, which is almost the same as the target shown in Fig.4.

Nonlinear
input

Fig. 5. Proposed network applied to ring in square problem.

The network used for this problem is shown in Fig.5. The
nonlinear input function is a 3rd-order function. The train-
able activation function, used in the hidden units, includes
2 basic functions. The output unit has a fixed sigmoidal
function. 1200 training data are randomly selected from
two classes shown in Fig.4. The training was stopped if the
mean square error (MSE) for all training data is less than
0.001. The learning curves are shown in Figs.6 and 7.

The multilayer neural network with fixed sigmoidal units

02
0.16
0.12 A A A
© .
8 f
E '
008 [*
004 fi
0 AN
0 20000 40000 60000 80000 100000

epoch

Fig. 6. Learning curves by using multilayer network with 20, 30
and 40 hidden units.

requires 40 hidden units and 10,000 epochs for convergence.

The new method requires 2 hidden units and 300 epochs.
Figures 8 and 9 show the nonlinear input functions of

the 1st and 2nd hidden units. The activation functions for

SSSSSINEE
i\
225202 SIS S TN
KRR ST
A1 LAEAKIKKK BN
2 RN SIS
g RS IRESIRSSIINN
RASANINNN
RIS
< S

>

==
IS

55
S T5SESSSSSIIN
S essaseseess

ST

=3 S
55 S sess ey
ol A S50
S SIS IO
25 ;izillllllll"" <2 S ‘:‘“\\\\\“
Vi N
7 00058

20020 KIS
sy
& SRR

Fig. 9. Nonlinear input-function of 2nd hidden unit.

25

Fig. 10. Activation function of 1st hidden unit.

SRS
BOSSEXIEE
NS 0 %,
N oSodoisy
NN
NN

355
5

%
s

S5
555
0%

=
=
SN
2R
L

2572

2

Fig. 12. Output of 1st hidden unit.

5.2 Example 2: Double rings in square

A double rings in square problem is shown in Fig.14. The
multilayer neural network with 40 fixed sigmoidal hidden
units and the proposed method with the same network as
in Example 1 are applied to this problem. The learning
curves are shown in Fig.15. The proposed method requires
2,500 epochs. In the case of the MLNN, 25 percent of the
trials converged. 25,000 epochs are required.

From these simulation results, the proposed method is
very useful to reduce the network size and to achieve fast
convergence.

6. Conclusion

A multilayer neural network with the nonlinear input func-
tions and the trainable activation functions has been pro-
posed. They are simultaneously trained. Simulation results
using complicated pattern classification demonstrate small
size network and fast convergence are achieved by the pro-
posed method.

(i
"offofofgfo “}\\\!&&S

)
x,°

Fig. 13. Output of 2nd hidden unit.

Fig. 14. Double rings in square problem.

0.7

0.6

0.5

0.4

mse

0.3
0.2 wa__’____jh
0.1 V

0 500 1000 1500 2000 2500 3000
epoch

et

Fig. 15. Learning curves for MLNN (dotted line) and proposed
method (solid line) in double rings in square problem.

REFERENCES

[1] J.Sietsma and R.J.F.Dow,” Neural net pruning-Why and how,”
Proc. IEEE ICNN’88, pp.325-333, 1988.

[2] J.Sietsma and R.J.F.Dow,”Creating artificial neural networks
that generalize,” INNS Neural Networks, vol.4, pp.67-79, 1991.

[3] K.Nakayama and Y.Kimura,” Optimization of activation func-
tions in multilayer neural network,” Proc. IEEE ICNN’94, Or-
lando, pp.431-436, June 1994.

[4] K.Hara and K.Nakayama,” Comparison of activation functions
in multilayer neural network for pattern classification,” Proc.
ICANN’94, Sorrento, pp.819-822, May 1994.

[5] J.C.Zhang, M.Zhang and J.Fulcher,”Financial prediction using
higher order trigonometric polynomial neural network group
model,” Proc. IEEE ICNN’97, Houston, pp.2231-2234, June 1997.

[6] C.T.Chen and W.D.Chabg,” A feedforward neural network with
function shape autotuning,” INNS Neural Networks, vol.9, no.4,
pp.627-641, 1996.

[7] Y.Wu, M.Zhao and X.Ding,” Beyond weights adaptation: A new
neural model with trainable activation function and its super-
vised learning,” Proc. IEEE ICNN’97, Houston, pp.1152-1157,
June 1997.

[8] T.Burg and N.T-Gurman,” An extended neuron model for effi-
cient time-series generation and prediction,” Proc ICANN’97,
Lausanne, pp.1005-1010, Oct. 1997.

[9] K.Nakayama and M.Ohsugi,” A simultaneous learning method
for both activation functions and connection weights of multi-
layer neural networks” , Proc. IEEE INNS IJCNN’98, Anchorage,
pp.2253-2257, May 1998.

