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"~ Abstract

In a noise canceler system, generally, adaptive fil-
ters have to approximate a pole zero transfer function.
As the transfer function contains numerator polynomi-
als, the inverse filtering in the noise cancelling problem,
becomes more severe. In the case of an FIR adap-
tive filter, it is possible to approximate the pole zero
transfer function using a sufficiently large number of
taps. However, the convergence time depends on the
step parameter of the algorithm, used in the adaptive
process. Also, when zeros are close to the unit circle,
the FIR requires a very long learning time to converge,
in the case of inverse filtering. This paper proposes
a learning method to overcome this slow rate of con-
vergence. This method is mainly based on the fact
that the NLMS algorithm converges very quickly if the
initial tap vector is close to the optimum value. The
proposed method works as follows. The problem is di-
vided into two phases. In the first phase, the system
identification is performed which generally requires a
shorter learning time than that of the inverse filtering
when the noise path contains zeros away from the cen-
ter of the unit unit circle. The parameters estimated
in this phase is then copied to the initial tap vector of
the second phase. Now, in the second phase inverse fil-
tering is performed. However, before, copying the tap
vector to the second phase its inverse impulse response
should be calculated out. This inversion requires no
matrix inversion, since a sample by sample inversion is
employed. As said earlier, the NLMS converges quickly
when the initial tap vector is close to the optimum, the
adaptive filter converges quickly in this phase.

So, in brief, this paper proposes a Two Phase Adap-
tation Process (TPAP) method for quicken the learn-
ing time of an adaptive process in an inverse filtering
problem.

1 Introduction

Adaptive noise cancelling is needed where no prior
knowledge of signal or noise characteristics are avail-
able. An adaptive filter uses an input as its reference
data signal which is derived from one or more sensors
placed in the noise field. The noisy signal works as the
desired data signal of the adaptive filter. In this case
of noise cancellation, the function of the adaptive filter
is to improve the signal to noise ratio at its output in
comparison with the same at the desired input. In noise
cancellation problem, the adaptive filter try to estimate
a transfer function, output of which is an estimation of
the noise at the desired input. This generally, corre-
sponds to inverse filtering. Inverse filtering itself is a
slow process when the transfer function contains zeros
away from the center of the unit circle. Specially, when
the algorithm, used in the adaptive process, has a small
step size, it takes a very long time to converge. In this
paper, a two phase adaptive process (TPAP) has been
proposed to cope with the this slow rate learning pro-
cess and also a comparison between the proposed and
the conventional method is provided. Here, we study
the following subjects:

o Inverse filtering takes longer learning time com-
pared to direct filtering when the zeros are away
from the unit circle center.

o NLMS algorithm is sensitive to initial tap vec
tor, i.e., it can converge faster if sarts from a tap
vector which is closer to the optimum value.

Exploiting the above facts, we built the proposed method
(TPAP). The proposed method has following advan-
tages

¢ Faster than conventional method.
o Less sensitive to step parameter size.

The effectivity of the proposed method has been con-
firmed through computer simulations.
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Figure 1: Conventional adaptive noise canceler

2 Formulation of the Problem

Figure 1 shows a general noise cancel circuit, where
Hyisthe FIR adaptive filter transfer function. Accord-
ing to the figure, d,x and e are the desired, input and
error data sequences respectively. H, and Hj are two
path transfer functions. Now, we write corresponding
t-domain equations in case of no signal condition

X(2)[H1(2) — Ho(2)Ha(2)] = E(2) (1)

Now, our goal is to make the right side of the equa-
tion equals to zero, because it is nothing but the error
itself. So, we can write

HA zZ)= 2
So, in a noise canceler system, an adaptive filter
Ha(2) must approximate a transfer function Z; 2
. expressed in above equation. Now, as the term 1/H;(z)
" exists, the problem can be regarded as an inverse filter
estimation problem. H4(z) is assumed to be an adap-
tive FIR filter adapted by the NLMS algorithm in this
paper. poles of the filters Hy(z) and zeros Ha(z) are
ocated inside the unit circle. Therefore, the theoretical
optimum solution can exist, which has a rational func-
tion of z=! that is an IIR filter. However, even H4(z)
. . . . H,(z
is an FIR filter, it is possible to approximate F;%?% by
Hy(z) using a sufficient number of taps.

The time domain equation for the general adaptive
noise canceler can be written as follow

as

e(n) = s(n) +vi(n) - WT(n)®(n)  (3)

where, WT (n) is the adaptive filter coefficients and
&(n) is the filter input vector. v; and s are signal and
noise respectively. After convergence, W7 (n) should

be equal to the impulse response of H;(j) ideally. i.e.,

the e(n) at the ouput of the adaptive filter equals to
zero. It should be noted here that, the canceler output
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b. 2nd Phase Adaptation

Figure 2: Two phase adaptive noise canceler

e(n) not only contain the v;(n), the noise term but
also the signal s(n). The adaptation process reduces
the error term e(n) at the filter output without any
reduction of the signal itself i.e., s(n). However, this
is only true in only ideal case, where no leaking of the
signal component into the input data is confirmed.

In our problem, as we said earlier, the problem is di-
vided into two phases. Figure 2 shows the method. Fig-
ure 2a shows first phase where desired signal is applied
at the adaptive filter input and the ouput of H, is used
as the desired data. So, in this condition, a direct sys-
tem identification is performed. After convergence, the
tap vector is stored and the adaptive filter is switched
to the second phase as shown in Fig.2b. In this phase,
the initialization of the tap vector is done by copying
the tap vector stored un the previous phase. However,
before using this vector for initialization in this stage,
proper inversion should be carried out. This inversion
requires no matrix inversion; a sample by sample in-
versing can be employed. The inverse impulse response
of can be is calculated out as follows.

1
H =
B(Z) h0+h12-1 +h22“2+...
= wo+wz +wyz? 4. 4)

Here,h, and w, are the tap vectors of the adaptive
filters in the first and second phase respectively. Fur-
thermore, it can be rewritten

[h0+h12_1 +h22—2 + ][wo +wlz'l +U)22—2+ ] = 1

Comparing the polynomials in both sides, the following
formula can be obtained

wy = l/ho
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Figure 3: A flow chart for the proposed method

n-1
1
Wy = =7 w.-hn_,-, nZl 5
D (5)

Thus the inverse impulse response w, can be cal-
culated from wp to wy_; sample by sample.

Now, a flow chart for the operations of the pro-
posed method is shown in Fig.3. It is be noted here
that the real application should require a no signal pe-
riod to be detected. When, a no signal is detected,
only then the operations for the first phase should be
performed, otherwise the signal will interfere with the
identification process. This no signal detection act has
been included in the flow chart though this was not
actually employed in the simulation.

3 Algorithm

Many adaptive algorithms have been proposed till
now to solve these types of adaptive filtering problems,

but each of them has its own drawbacks considering
different actual conditions.

Here, in our case, we used the NLMS algorithm [1]
in our simulations as we stated earlier. In the process
of adaptation, the error sequence e(n) is obtained by
substructing d(n), an estimate of the desired sequence
d(n), from d(n) itself. The tap weights W are updated
iteratively untill error term becomes significantly low.
The algorithm can be summarized as follows

W(n+1)=W(n) + 2pe(n)x(n)
7
a+ztf__1x2(n—k+1)
e(n) = d(n) — d(n)
xT(n) = [:c(n), e vz(n -N+ 1)] (6)

p(n) =

4 Effects of the parameters
of the Algorithm

4.1 Effect of Step Parameter

Step parameter is one of the prime factors that af-
fect the LMS algorithm. When a small step parameter
is used, convergence rate is slow. On the otherhand,
when this parameter is large the convergence speed is
relatively fast but in the expense of an increase in the
residual error [2]. In this case, less data enter the esti-
mation, hence, a degraded performance. So, in conven-
tional method a small size step parameter is desirable.
However, in the proposed method, for same step size,
the learning time can be reduced significantly. This is
possible because a two phase method is employed as
explained before. Also, it is clear from the simulation
results shown in the following section.

4.2 Effect of Initial Tap Value

Generally adaptive filtering algorithms starts with
an initial tap value which equals to a null vector. How-
ever, from simulation results it has been found that
the NLMS algorithm is very sensitive to the initial tap
weights. The convergence rate is faster if the adapta-
tion sarts from a tap vector which is closer to the opti-
mum value. In a different problem, a pre-estimation
method has been suggested when a minimum is far
away from the initial tap vector {3]. However, in our
proposed method, the convergence time has been re-
duced significantly by using a different initial tap value
other than zero. This fact would be clear by inspecting
the simulation results shown in the following section.
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5 Simulation Results

Computer simulations were performed based on the
general noise canceler configuration as shown in Fig.1.
Conditions used in the simulation are summarized as
follow.

imag. axis
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Figure 4: Noise path characteristics.

(a) Positions of zeros and poles.

(b) Frequency and inverse frequency response:
(c) Impulse response.

(d) Inverse impulse response.

o Hi(2)=1

e Hy(z) is a second order transfer function.
¢ No signal condition.

o Algorithm: NLMS

¢ Step parameters: 0.1 and 1.0

The transfer function of a second order system can be
expressed as follows.

1-2r,cos0,z7 ' 412272

H(z) = C[l — 2rpcosfp21 + rgz'2

(7)

Here c is a scaling constant. The following table shows
the pole-zero locations of the noise path filter.

TABLE 1
pole-zero locations of H,
rp = 0.9 | 8§, =100°
r, =08 1|86, =140°

Now, in Fig.3 we see the noise path character-
istics. Figure 3a shows the pole-zero position on the
unit circle. Figure 3b shows the calculated frequency
response of the transfer function and its inverse. The

solid and the dotted plots show the frequency and the
inverse frequency plots respectively. Figurs 3¢ and 3d
show calculated impulse and inverse impulse responses
respectively upto 50 samples.
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Figure 5: Simulation using conventional result.
(a) Squared error.
(b) Tap weights.
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Figure 6: Simulation using proposed method.
for step parameter 0.10.

(a) Squared error at first phase.

(b) Squared error at second phase.

(c) Tap weights after first phase.

(d) Tap weights after second phase.

Now, we investigate the conventional inverse filtering
used in the noise cancel problem. In this case, the
value of step parameter was 0.1. Figure 5a shows the
learning curve for the case. 8000 iterations were used in
the simulation. Figure 5b shows the adaptive filter tap
value after 8000 iterations. By, inspecting Fig.5a, we
can guess that the full convergence is not yet obtained.
Now, we investigate Fig.6, where the simulation result
for the proposed method has been shown. Figure 6a
shows the learning curve for the first phase whereas,
Fig.6b shows the same for the second phase. We can
notice that the error in the second phase is extremely
small compared with the conventional method. Figures
6¢c and d shows the estimated tap values for first and
second phase respectively. w; and w; corresponds to h

-177-



and h; respectively.

In brief, using same number of iterations, the pro-
posed method can attain a smaller error compared to
the conventional method. In other words, the learning
time has been reduced in proposed method in compar-
ison with the conventional method.
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Figure 7: Simulation using conventional method.
for step parameter 1.0.

(a) Squared error.

(b) Tap weights.
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Figure 8: Simulation using proposed method
for step parameter 1.0.

(a) Squared error at first phase.

(b) Squared error at second phase.

(c) Tap weights after first phase.

(d) Tap weights after second phase.

Now, we investigate the second case, where the
value of step parameter was 1.0. In this case, the re-
sult of conventional method has been shown in Fig.7.
In this case, the conventional method approached con-
vergence but the error after 8000 iteration is higher in
comparison with the proposed method, shown Fig.8.
Figure 7b shows the tap value for the conventional
method after 8000 iterations. It is interesting to note
that in this large step parameter case, the first phase
of the proposed method took only about 450 iterations
to converge, which is shown in Fig.8a. Figure 8b shows
the learning curve for the second phase. We can notice
that the error is very small in the the proposed method
after completing two phases. Two phases aggregately

took only 450+4000=4,4500 iterations to reach a very
small error in comparison with the proposed method.
Figures 8a and b show tap values for first phase and
second phase respectively.

Hence, this example also shows that the proposed
method is faster than the conventional one.

Now, also it has been found by computer simu-
lations that a 10 percent variation from the optimum
initial tap weights is tolerated by the NLMS in inverse -
identification problem. So, the possibility of a slow rate
tracking is also expected.

6 Conclusion

In this paper, we investigated the inverse filtering
problem in connection with the adaptive noise cancel-
lation. In conventional noise caneling problem, a long
convergence time is needed when zeros of the noise path
locate away from the center of the of the unit circle.
Also, NLMS algorithm is sensitive to initial tap vec-
tor. However, when the initial tap vector is close to
the optimum, the convergence rate becomes quicker.
Based on these facts, a Two Phase Adaptation Pro-
cess (TPAP) method was proposed to cope with the
slow convergence rate. This method, works as follows.
In the first phase, a direct system identification is em-
ployed and the tap weights obtained after the conver-
gence is stored. This tap vector is inversed sample by
sample and used as the initial tap vector in the second
phase. Now, in the second phase, an inverse filtering
is performed. As the initial tap vector is calculated
out from the estimated tap weights of the first phase, a
quick convergence is obtained in this phase. The total
time of convergence in two phases is less than the same
in the conventional method, keeping the error constant,
Simulations were performed using two different step pa-
rameters. In both cases similar results were obtained.
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