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Abstract  In previous works, Fourier-transform-based electroencephalogram (EEG) feature extraction with effective
preprocessing and multilayer neural networks (MLNNs) has been applied in classifying cognitive mental tasks in a
brain-computer interface (BCI). However the EEG signals have some shortcomings of noise and spatial resolution. In
this paper, spatial filtering techniques are employed. The use of common spatial pattern (CSP) filter is one of the well-
known spatial filtering methods in the BCI framework. The CSP filters aim to find the most discrimination between
two classes. Also, the CSP filter is mostly applied to extracting features of motor-imagery-based EEGs. In this work,
we apply the CSP filter to cognitive mental task classification. A feature extraction method is proposed for the CSP
filter, in which Fourier-transform-based features are used. An error-correcting output code (ECOC) is combined with
the CSP filters to realize a multiclass BCI system, and also to correct some misclassifications. The proposed BCI
system combines several binary classifiers, called an ‘elemental classifier’ in a parallel form. An elemental classifier
consists of the CSP filters, FFT, preprocessing and an MLNN. The output of the MLNN in one elemental classifier is a
1-bit code, that is, 1 or 0. The output of the parallel form becomes a multibit code that is generated by the ECOC. All
elemental classifiers receive the same EEG signal. An elemental classifier classifies two groups of mental tasks. The
assignment of mental tasks to two groups is accomplished by the ECOC. The CSP filters and the MLNN in each
elemental classifier are optimized so as to classify two groups of mental tasks. The ECOC is further decoded into the
final code, which expresses a single estimated mental task. We also develop a nonuniform resolution sampling
technique in preprocessing to approximate spectral information in useful frequency bands and suppress noise in the
high-frequency bands. The experimental results of 4 subjects show that the proposed BCI system can boost the correct
classification rates from 66%~88% to 84%~96% and suppress the misclassification rates from 4%~26% to 4%~12%.

Keywords: brain-computer interface (BCI), electroencephalogram (EEG), common spatial filter, error-correcting
output code (ECOC), multilayer neural network (MLNN)

suitable feature extraction method, the unnecessary
dimensions of signals, which are determined as noise,
could be reduced while still retaining necessary
information.

In this study, we focus on CSP [11] spatial filtering.
We concentrate on the concept of CSP aiming to find the
greatest discrimination between two data sets by
optimizing the ratio between within-class scatter and
between-class scatter of those two data sets. This is
unlike the PCA [12], which is based on the scatter of the
whole data set and decomposes it into the principle
components that are ranked by variance. The principle of
ICA [13] is to solve the blind source separation (BSS)
problem by finding the most mutual statistical
independence between source signals. ICA has also been

1. Introduction

In a noninvasive brain-computer interface (BCI)
framework, the EEG-based BCI has recently been
approved as one of the most interesting topics. However
EEG signals have some shortcomings of noise and
spatial resolution. The voltage potentials from sources
can contribute within a small radius through the scalp
toward each electrode, making the observed signals
obscure and noisy [l]. Moreover EEGs are also
inherently nonstationary owing to changes in the
individual subject's brain processes through out an
experimental session [2], [3]. Therefore, several spatial
filtering techniques are applied to remedy the noise and
obtain more localized signals, or signals corresponding

to single sources. Some examples of prominent
techniques that are applied in the BCI framework are
bipolar filtering, the common average reference method,
Laplace filtering, and finally, the statistical linear-
transformation-based spatial filtering for linearly
transforming raw EEGs to new feature spaces [1]. The
well-known spatial filtering algorithms in this family are
principle component analysis (PCA), independent
component analysis (ICA) and common spatial pattern
(CSP). The aforementioned algorithms are recently being
used in many BCI studies [1], [4]-[10] as an effective
preprocessing process that provides feature extraction
and dimension reduction at the same time. With a
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widely used for analyzing brain signals and to remove
artifacts in brain signals [14], [15]. However, in ICA,
there exists a permutation problem, that is, the order
of extracting features may change data by data. The
features are arranged as a one-dimensional vector that is
used in a classifier. Different orders cause different input
patterns for the classifier, resulting in insufficient
classification performance [16], [17].

CSP has been successfully applied to classify motor-
imagery-based EEG [1], [4]-[10]. Furthermore, CSP has
also been applied to slow cortical potential (SCP)-based
EEG In this work, the CSP method will be applied to
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different behaviors of EEG data sets, which include
nonmotor-imagery mental tasks, e.g., mathematical
multiplication, letter composition, 3D object rotation,
and visual number counting.

These EEG data sets were provided by the Colorado
State University and have been used in many studies [2],
[3], [16]-[23]. In previous research, many feature
extraction methods have been employed, e.g., min-max
amplitude, mean, variance, standard derivation, power
spectral density, frequency band powers, asymmetry
ratios, autoregressive (AR) coefficients, eigenvalues of
correlation matrix, and wavelet packet entropy [24].

Nakayama and coworkers [17]-[19] used the Fourier-
transform-based features and some optimized
preprocessing with the muitilayer neural network
(MLNN) to successfully classify five classes of mental
tasks for a single subject at an accuracy of 78~88%. In
this study, in order to confirm efficiency in general, four
subjects are considered. We follow that method by
adding CSP filtering into the BCI system, as expressed in
Sec. 4.1. We also propose a modified method for the
sampling reduction procedure, elaborated in Sec. 4.3.

Several kinds of classification algorithms for EEG-
based BCI systems have been compared in [25]. MLNN,
denoted MLP in [25], has good classification ability. It
does not always provide the best performance in all cases.
In some cases, the support vector machine (SVM) can
provide more efficient performance than MLNN owing
to its regularization. However, by using the
generalization method, the classification ability of
MLNN can be drastically improved [19]. Therefore, in
this study, we employ the MLNN with the generalization
[19] as a classifier.

This work engages a multiclass classification
problem. However, originally, CSP was designed for
binary-class problems. To deal with multiclass problems,
Dornhege and coworkers [6], [7] proposed many
multiclass extension approaches to extend two-class CSP
to multiclass application. Those methods are called,
CSP-IN (CSP within multiple-binary classification) [4]-
[5], CSP-OVR (binary CSP combination with one versus
the rest strategy) [6], [7], [10] and CSP-SIM (CSP with
simultaneous diagonalization method) [6], [7], [9]. We
investigate those approaches that are based on MLNNs
and for the CSP-IN approach, we propose an ensemble
of binary MLNNs with the error-correcting output code
(ECOC) framework.

ECOC was originally used in signal transmission
approaches for correcting bit distortion cause by noisy
communication. Later, Dietterich and Bakiri [26]
proposed ECOC as a general framework for solving
multiclass problems by reducing the multiclass problems
into several binary class problems with an error-
correcting property. We merge this property with the CSP,
which theoretically makes the classes most discriminant.
We intend to make the CSP-ECOC combination raise the
accuracy rates for mental task classification by using the
EEG data. Py

The remainder of the paper is organized as follows.
CSP analysis and multiclass extensions are described in
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Sec. 2. The ECOC framework is described in Sec. 3. A
proposed BCI sy$ten is described in Sec. 4 using a block
diagram consist of CSP filtering, feature extraction, and
preprocessing. The experimental setup is described in
Sec. 5. In Sec. 6, experimental results and discussions are
presented. Finally, our work is concluded in Sec. 7.

2. Commen Spatial Pattern Method

The CSP algorithm [11] is aimed at finding spatial
filters that project the original signals to the most
different spaces between two data sets in term of
variance. The variance of a data set is maximized and the
variance of another data set is minimized, simultaneously.

-

2.1 CSP algorithm

1. Let 2 EEG data sets be denoted X; and X,, the
dimension of which is PxK, where P is the number of
electrodes of the EEG data, and K is the number of
samples in the time domain.

2. Compute the normalized auto-covariance matrices S,
for each class.

__ XX/
" trace(X,X])’
3. The whitening transformation is performed by

computing the sum of all class auto-covariance
matrices.

ie{l,2} (1)

Som =5 +8S, )
4. Then, decompose S, the eigenvector matrix and the
eigenvalues of the mitr_i;; Seum as follows:

S.,. = UAU" 3
U and A are the eigenvector matrix and eigenvalue

matrix of Sgm, respectively. Then the whitening
transformation matrix becomes

V=AY @
5. Apply the whitening -mrocess to both the auto-
covariance matrices:

S, =VS, V" ®)
S,=VS,V" (6)

6. CSP analysis is given by the simultaneous
diagonalization of these two covariance matrices.

Thus, é,and éz should share a common eigenvector
matrix, and the corresponding eigenvalues for the
sum of é, and éz should be one. Therefore, é, and
éz can be decomposed as follows:
W'S,W=D (7
WS, +S,)W =1 1))
Wis a common eigenvector matrix of él and éz ,

D is an eigenvalue matrix of é, and I is an identity

matrix
7. Practically, we choose only a few of the most
important eigenvectors from W by sorting the
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eigenvalues in D in descending order and choosing
2m eigenvectors (2m < P) that correspond to the m
largest and the m smallest eigenvalues. Then we
obtain
W, =W aeees W, s W ey W | )]

where w, is an eigenvector corresponding to an
eigenvalue in D.

8. Then, we obtain the spatial filters of the CSP
transformation matrix as

9. Finally, the projected signals are defined as
Xcsp: = W, X, i€{l,2} (I

2.2 Extension to multiclass CSP

Originally, CSP was designed for 2-class problems.
To extend this concept to multiclass approaches, some
approaches of multiclass extensions have been proposed.
Muller-Gerking and coworkers [4] proposed a multiclass
extension of CSP based on pairwise classification and
voting. Then Dornhege and coworkers [6], [7] proposed
the other two algorithms based on the concept of CSP.
These approaches are summarized below.

1) CSP-IN: The problem is separated into several
binary problems, and is found the optimum CSP for
each binary problem.

2) CSP-OVR: Several binary CSPs are used for a
single multiclass classifier.

3) CSP-SIM: CSP is designed by the joint
approximate diagonalization (JAD) method and is
applied to a single multiclass classifier.

CSP-IN and CSP-OVR approaches are similar in the
concept of extension from a 2-class CSP by adding more
binary CSP processes to form a multiple classifier. An
important difference between them is the classification
process. The CSP-IN uses several binary classifiers to
deal with each binary problem. On the other hand, the
CSP-OVR solves these binary problems by using a
single multiclass classifier.

CSP-SIM derives from the concept of the 2-class
CSP algorithm. The CSP algorithm will find a
simultaneous diagonalization of both covariance matrices
in which the sum of eigenvalues is unity. Thus it can be
extended to many classes if we can approximate a
simultaneous diagonalization for the many-class problem.
However, unlike the 2-class problem, there is no general
strategy for choosing the appropriate CSP patterns for
multiclass CSP, because the 2-class problem uses the
strategy of the highest or the lowest eigenvalue.

Dornhege and coworkers [6], [7] have proposed a
heuristic way of solving this problem using some score
strategy. Given D is an approximate simultaneous
diagonal matrix, computed by Joint Approximate
Diagonalization (JAD), it is in a form of concatenated
eigenvalue matrices i.e., D = [D, D,,..., Dy], N is the
number of classes. An appropriate eigenvector is chosen
for the i class, corresponding to the highest score of
eigenvalue 4 in each submatrix D;, on the basis of the

i)
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following criteria:
score(A,) = max(4,

‘.],l/(l+(N—l)2/1” /(l—ﬂ,,l,))) (12)
Note that if one eigenvector is selected more than once, it

is replaced by the eigenvector with the next highest score.

3. Error-Correcting Output Codes
3.1 Multiclass classifier based on ECOC

Error-correcting output codes (ECOC) are approved
as a general framework for combining several binary
problems to address a multiclass problem [26]-[28].
Consider L binary classifiers. Each classifier outputs a
single bit code. They are combined in a parallel form to
produce an L-bit code, which is an output vector. This
output vector is further decoded into the final code,
which expresses the classification result.

The ECOC framework consists of two steps.

Step 1 (Coding):

A codeword is assigned to each class. For an N-class
problem to be solved by using several binary classifiers,
we required L binary classifiers. To supervise each L
binary classifier, a set of N binary labels (1 or 0) is
assigned. Then, combining thoge N-bit labels from L
binary classifiers, a N X L coding matrix M is defined. A
row vector of M is called a codeword, which used to
determine the label of classes. A column vector of M
corresponds to labels of subproblems for training each
classifier. :

Step 2 (Decoding):

The output vector for new EEG data will deviate from
the target vector that is the codeword. In this case, the
most similar codeword, which has the shortest distance
from the output vector, is selected from the codeword
table, and decoded into the final code, which expresses a
mental task.

The performance of ECOC mostly relies on the
codeword table that applied to the BCI system. The
regulations of designing codewords have been discussed
in many studies [27]-[29]. The method of generating
codewords can be categorized into the following three
types.

1) Algebraic coding theory methods
2) Randomization ;
3) Unique codewords for a particular data set

In this paper, we use the generalized algebraic coding
theory, e.g., one-per-class coding (OPC), Hadamard-type
coding, and exhaustive"ECOC (E-ECOC). For decoding,
we use the L,-norm distance. We prefer to the use L,-
norm distance instead of the hamming distance because
it is more flexible for adjusting the threshold for rejecting
the classification results due to small outputs.

3.2 Coding and decoding strategy

Coding strategy: one-per-class coding

One-per-class (OPC) coding is defined as one of
standard output coding strategies. The simplest code
defines a single binary value at the corresponding
position for each class. OPC has also been used as the
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target vectors in a single MLNN, as shown in Table 1. C;
expresses the /" classifier used in a binary classifier, and
Q; indicates the i class. The number of binary classifiers,
which are combined in a parallel form, is L=5, and the
number of classes is also N=5. :

Table 1 Codeword table of OPC coding for 5-class problem

Class Classifier
Ci1 C2 C3 C4 C5
Q, 1 0 0 0 0
Q, 0 1 0 0 0
Q 0 0 1 0 0
Q, 0 0 0 1 0
Q, 0 0 0 0 T

This table corresponds to the codeword matrix M. The
row vectors indicate the classes, and the column vectors
indicate the elemental classifiers. Namely, the i/ row and
the /" column mean the i” class and the j* elemental
classifier, respectively.

Coding strategy: Hadamard-type coding

Hadamard-type coding [30] is created from the
Hadamard matrix, which is a 2" square matrix having
elements of either +1 or -1 and mutually orthogonal rows.
Hadamard coding has good points in two assessments:

1) Row separation: each codeword should be well
separated in the Hamming distance from each of the
other codewords.

2) Column separation: The elemental classifiers should
be uncorrelated to each other, that is, they should not
be redundant.

To design the Hadamard-type coding matrix, first we
refer to a Hadamard matrix whose order is greater than
the required number of classes. The two main methods of
constructing the Hadamard magrices, Sylvester construc-
tion and Paley construction, have been discussed in [31].

For example, in the 5-class problem, the minimum
order of the Hadamard matrix, which covers this problem,
is 8 (2°) as shown in Eq. (13).

+ o+ o+

o+ 4+
T
+ o+ - T o+ 4 - - (13)
R T

H,=
FoE o+ - - = -
oo+ - -+ -+
+ o - - -
y

v+ - -+ - + + -

In the above equation, * and — are replaced by 1 and
0. The column that is identical (all ones or all zeros), is
useless for a classifier, so the first column of the
Hadamard matrix is neglected. In this case, we require 5
classes of codewords, so the last three rows of the
Hadamard matrix are pruned. Finally, the Hadamard-type
coding matrix is obtained, as shown in Table 2.
Table 2 Codeword table of Hadamard type for 5-class problem

Classifier
c2 C3 C4 Cs Cé c7

Class

o))
Q,
Q
Q
Qs

) R Y Y T

—|olol~]-

1
0
0
1
1

(=1 k=] k=1 Ll el
o|~|o|le|—

ol—|—|~|~
[=1 =] O k=1 ol

Coding strategy: exhaustive ECOC
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Dietterich and Bakiri [26] have proposed a code and
a procedure for generating a well-balanced hamming
distance between rows and include all possible nontrivial
and nonredundant 2™ -1 length codes for the N-class
problem, called exhaustive ECOC (E-ECOC). These
codes are recommended to be used for 3 < N < 7. The
procedure for generating E-ECOC is as follows. Assign
the first row as all ones. The second row consists of 22
zeros followed by 2**?-1 ones. The third row consists of
23 zeros followed by 2™ ones followed by 2
zeros followed by 231 ones. The i row consists of
alternating 2™ zeros and ones. The last row contains 0,
1,0, 1,0, 1,...,0. For 8 < N <11, Dietterich and Bakiri
suggested selecting a good subset of columns from the
exhaustive code by means of the optimization algorithm.
For N > 11, the random code generation with a hill-
climbing procedure is recommend.

The E-ECOCs for 5 classes, obtained from the
generation procedure detailed in [26], are shown in Table
3. In this study, we employ the E-ECOC.

Table 3 Codeword table of E-ECOC 5-class problem

j Classifier

' cilczlcales C5}C6‘C7?cx C9}c1o‘cn Clz‘clﬂcmﬁms1
Q,I‘llllllll‘l‘lll;]‘]
ngfo”‘rbuTo ojololof1 it o1 {1]1 .
@ 0 0 0ot 11 1 0 0 o o 1‘1”;
';z;";d‘o 1 ljo Orl‘il o?ofl}l o‘o L
Q 0l ol1 o 1 0’;1‘0 110“1‘0 1o

Decoding strategy: L,-norm distance

In the decoding process, the output vector from the
parallel form of the elemental classifiers is compared
with the patterns in the codeword table, and the most
similar pattern, that is, the codeword, is selected, which
corresponds to the real output. Similarity is evaluated
using the L;-norm-based distance. Let y be the output
vector of the parallel form of the L elemental classifiers,
y = i yoeoos y1_]T, where, y; is the output of the j’h
elemental classifier. The L;-norm distance for the " class
is defined by

d = gc" -y (14)

where ¢, is a target value for the i class and the /&
elemental classifier. In other words, c; is an element at
the i row and the /™ column in the codeword matrix.

3.3 Performance of correcting codes

The efficiency of ECOC is determined by the number
of error bits that can be corrected. The capability of error
correcting is L(d@-1) /2)] bits, where d is the distance
between a row's codeword in the codeword matrix and
|- is the floor operation. For example, in a S-class
problem, a 15-length codeword, as shown in the Table 3,
is applied, then distance d is 8; thus, the capability of
error correcting L(d—] ) /Z)J is 3 bits. In contrast, for the
Hadamard-type, as shown in Table 2, the capability of
error correcting is 1 (d4=4). The OPC coding has no
capability of error correcting (d=2). Because the distance
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d correspond to the code's ;ierfonnance, so it is possible
to increase the performance of coding by expanding the
codeword length. However, the longer codeword means
more classifiers and more computation. The issues
concerning the optimization of codeword length are
discussed in [28], [29], but they are not in the scope of
our study. The performance of different correcting codes
applied to CSP-ECOC is also discussed in Sec. 6.

4. Proposed BCI System

4.1 Block diagram of proposed BCI system

The proposed BCI system combines the binary
classifiers using the CSP filters and the ECOC
framework; hence, it is called CSP-ECOC. We propose
that combination of discriminative spatial filtering of
CSP and error-correcting properties of ECOC can
enhance the performance of EEG classification.

¢
set 2 groups of mental task for each CSP Codeward [\xJ]
and use as target for taaining each MLNN

1331160
801inot
111o009)
IERERE N}

Decoder Q E

Estimated
Mental Task

EEG

Fig.1 Block diagram: (a) proposed BCI system based on CSP
filter and ECOC, and (b) elemental classifier

The block diagram of the proposed BCI system is shown
in Fig. 1(a). Figure 1(b) shows the binary classifiers,
called ‘elemental classifiers’ in this paper, that include
the spatial filter, which is the CSP filter, FFT,
preprocessing, and an MLNN in this order. They are
arranged in a parallel form. All elemental classifiers
receive the same EEG data, and classify two groups of
mental tasks. The output of a single elemental classifier
is 1 bit, that is, 1 or 0. A set of the output of all elemental
classifiers corresponds to the codeword, which is used as
the target pattern. The CSP filters and the MLNNs are
optimized to classify two groups of mental tasks. This
grouping is determined by the codeword matrix M. One
example is shown here. Let the number of classes, that is,
the mental tasks, be N=5 and the 1" column of M be [0 |
0 1 1]. The 1" elemental classifier, actually the CSP filter
and the MLNN, is optimized so as to classify two groups
of the mental tasks. The 1" group contains the 1" and 3"
mental tasks, and the 2™ group includes the 2™, 4" and
5" mental tasks, respectively.

The codeword matrix plays an important role in the
CSP-ECOC approach. The i row indicates the /" class,
that is, the /™ mental task. It is also used as the target
code of the parallel form of the elemental classifiers. The
™ column corresponds to the / elemental classifier. In
other words, the i row and the j column element ¢, is
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the 1-bit target code for the i mental task and the "

elemental classifier, respectively. Therefore, the numbers
of rows and columns in the codeword matrix are equal to
the numbers of mental tasks and elemental classifiers,
respectively.

The output of the parallel block is corrected as
follows. Let the output be y=[y|, y2,..., ¥1] and the target
code, that is, the i row vector, be ¢=[ci, ci,..., cir] of
M. The winner code is searched from a set of target
codes, which minimizes the L;-norm of | ¢;- y |. The
winner target code ¢; is further decoded into the final
output code, for example, [1 0 0 0 0], which means the
1" mental task is estimated. One of the target codes
uniquely corresponds to one of the final output codes.
With this decoding system, the mental task estimation is
more generalized by allowing some margin for binary
misclassified output. The capability of error correcting
has been described in Sec. 3.2.

Moreover, a rejection threshold is also employed in
order to neglect vague classifications. If the L,-norm
distances for the entire target codes are larger than the
threshold of rejection, then we cannot select a winner,
and the mental task estimation will be rejected.

4.2 CSP filtering

The EEG data are measured at several points on the
scalp. We use the EEG data sets, which are measured at 6
positions, i.e., C3, C4, P3, P4, Ol, and O2 (according to
the International 10-20 system) [20]. EOG is not
included for computing the CSP filters. It is used for
detecting eye artifacts in a different way. Six CSP filters
are created from 6 positions of the EEG data sets. One
CSP filter is used to emphasize the discrimination
between the two considered mental tasks by linearly
transforming the EEG data into a new signal. For
optimization, a fewer number of effective CSP filters are
selected for the most discrimination. The number of
required CSP filters is variable. The number of features
is also dependent on the number of chosen CSP filters.
For example, let the matrix X, represent 6 positions of
the EEGs recorded using a 250 Hz sampling frequency
during a 10 second interval. Therefore, Xor's dimensions
are 6x2500. If 4 CSP filters are chosen to form the

transformation matrix W

' » then it becomes a 4x6 matrix.
After transformation using Eq. (15), Xcsp’s dimensions

are reduced to 4x2500.
xCSP = Wm X xorg (15)

4.3 FFT and preprocessing
Data segmentation

The raw EEG signals have 2500 samples in a 10 s
interval. In order to make the response of the BCI system
faster, the EEG signal is segmented into short periods of
0.5-second length and 50% overlapping or shifted by
0.25 s. As a result, the BCI system can respond every
0.25 s. One segment includes 125 samples, and 39 seg-
ments are included in the original EEG signal. The effect
of EEG’s segmentation on classification performance
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will be examined in Sec. 6.
Fourier transformation of spatial filter outputs

The CSP analysis can be directly applied to
extracting the variance-based features. However, we
attempt to employ CSP filtering followed by Fourier
transform to extract features that provide the spectral
information [16]-[19].

The Discrete Fourier Transformation (DFT) of the
transformed EEG signal xcsp(n), given by Eq. (15), is
expressed by

K-l

Xk)=% xcs,,(n)exp(—jz%kn), k=01.2,..,K-1 (16)
n=0

where K is the number of EEG samples.

4.4 Frequency ranges and nonuniform resolu-
tion frequency ranges

It is generally believed that frequencies above 40 Hz
carry little information. Keirn [2] and Keirn and Aunon
[3] employed power values and asymmetry ratios from
the four common frequency bands: delta (0-3 Hz), theta
(4-7 Hz), alpha (8-13 Hz) and beta (14-20 Hz).
Palaniappan [21], [22] improved the performance of the
BCI system by using an additional low gamma band (24-
37 Hz) spectral power and asymmetry ratio. However,
some researchers have argued that in the high-frequency
region (>40 Hz), there also exists some useful
information. Graimann and coworkers [24] used higher
frequency components (70-90 Hz) in the event-related
potential (ERP)-based BCI system. Fitzgibbon and
coworkers [32] investigated the EEG rhythm activity
induced by eight cognitive tasks, i.e., visual
checkerboard, reading, subtraction, music, expectancy,
word learning, word recall, and video segment. They
have proposed that sustained high-frequency EEG
activity (30-100 Hz) connects to thinking processes. On
the basis of the above investigations, we use all
frequency ranges 0.1-100 Hz.

Uniform and nonuniform frequency resolution

When the EEG signal is sampled with a 250 Hz
sampling frequency during 10 s, 2500 samples are
generated. This data set is transformed by FFT, resulting
in 2500 samples. Since, the EEG signal is a real number,
half the number, that is, 1250 samples, is sufficient. 1250
is still a large number as MLNN input data. The number
of samples after FFT is reduced by averaging successive
samples. At the same time, the number of samples
assigned to frequency bands is optimized.

Significant information on mental tasks appears in
the low-frequency region. Therefore, sample intervals
after averaging should be optimized for the BCI system.
The conventional BCI system [18] arranges the samples
uniformly, that is, ‘uniform frequency resolution’ which
may cause some leakage of important information in the
low-frequency region and inadequate noise reduction in
the high-frequency region.

In this paper, to overcome these problems, ‘non-
uniform frequency resolution’ is proposed. The samples
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after FFT are positioned uniformly, that is, the interval
between the samples is given by 125 Hz/1250=0.1 Hz.
The number of samples is further reduced by averaging
the successive samples. The number of the samples to be
averaged changes depending on the frequency bands: 40
samples during 0-4 Hz and 4-8 Hz, 80 samples during 8-
16 Hz, 160 samples during 16-32 Hz, 320 samples
during 32-64 Hz, and 610 samples during 64-125 Hz are
averaged. This means only one sample is assigned to
each band. Since the number of bands is 6, the total
number of assigned samples is 6. This nonuniform band
division, that is, nonuniform resolution, is shown in
Table 4 and Fig. 2. Figure 2 also shows the uniform and
non-uniform band divisions. In this figure, the samples
on the left side are not used because the amplitude of
FFT is symmetrical for real signals.

Table 4 Nonuniform division of fre uency bands

Sample 1 2 3 4 5 6
Frequency (Hz) 0-4 4-8 8-16 16-32 32-64 64-125
Band Delta | theta | alpha | Beta gamma | omega

50
‘ Uniform @
Reduce sampling ,

200 .
3 A
100 \‘/vb f
¥ A,
o A g P,,J\-w ™~ A d b e,
20 40 80 100 120
e gued G gy o

iform e

Fig.2 Uniform and nonuniform resolutions
4.5 Nonlinear normalization and MLNN input
Nonlinear normalization

The information of mental tasks may be widely
distributed, not only in the peak's frequency band.
Important information for classification may be included
in small nonprominent frequency bands. Moreover,
naturally in the neural networks, large inputs play an
important role. To avoid the neural network's biased
learning, this nonlinear normalization [18] is applied
after the sample reduction.

)= log(x - x,,,, +1)
10g(X ey = Xpin +1)
Here, x means the sample value, and x,;, and x,« are the
minimum and maximum values in all data sets.

(17)

MLNN input patterns

The EEG data set for one mental task and one trial
includes the following data: 2500 samples X 7 measuring
points. The data of 6 measuring points, except for EOG,
which are counted as 6 signal sets here, are further
transformed though the CSP filters, resulting in a
reduced number of signal sets, for example, 4 signal sets.
In this case, 4 CSP filters are required. Each signal set is
further processed through FFT, sample reduction by
nonuniform resolution, and nonlinear normalization. At
the same time, the EOG signal is also processed in the
same way, except for the CSP filter. After that, the
number of signal sets is 4+1=5 sets. Each signal set has 6
samples. Five signal sets, which include 6 samples, are
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ordered in a 1-dimensional vector, which is applied to the
MLNN.

5. Experimental Setup
5.1 Data acquisition

In this study, we use the brainwave data sets that are
available from the web site of Colorado State University
[20]. The EEGs were recoded from 7 subjects, where 7
channels of electrodes were placed upon the scalp at the
positions C3, C4, P3, P4, Ol, and O2 according to the
International 10-20 system. The last channel was the
EOG recorded between the forehead above the left brow
line and another on the left cheekbone. Recordings were
made with reference to electrically linked mastoids Al
and A2. The EEG signals were recorded at a 250 Hz
sampling rate for 10 seconds (total 2500 samples per
channel). Recording was performed with a bank of Grass
7P511 amplifiers whose bandpass analog filters were set
at 0.1 to 100 Hz. The experiment was divided into 5-trial
sessions. Subjects were asked to perform 5 mental tasks
and repeated 5 trials of each task in one day. They
returned to do a second set of five trials on another day.
Without any physical movement, the subjects were asked
to perform the following mental tasks.

e Baseline The subjects were asked to do nothing, but
relax.

e Multiplication The subjects were instructed to calculate
a nontrivial multiplication problem.

e Letter composition The subjects were asked to mentally
compose a letter.

e Rotation The subjects were asked to rotate a complex
three-dimensional object in their mind.

e Counting The subjects were asked to write visualized
numbers one by one, deleting the previous number
before writing the next number.

5.2 Several BCI appr@ches

In order to evaluate the efficiency of the proposed
method, we compare several conventional BCI systems.
They are introduced in this section.

Conventional: The BCI system [18], [19] consists of
FFT, preprocessing and a MLNN. 70 samples and 42
samples for uniform and nonuniform frequency resol-
ution, respectively, are used as the MLNN input data.
CSP-OVR: 2 CSP-OVR-based spatial filters are used to
extract Fourier-transformed features. The feature samples
are uniformly reduced to 5 per electrode position. After
the nonlinear normalization, the feature samples are
ordered in a 55-dimensional vector. In the same way, by
using the nonuniform frequency resolution, that is, 6
samples for 6 frequency bands, a 66-dimensional feature
vector is generated. MLNNSs are used for classifiers.
CSP-SIM: The CSP-SIM method is used to extract
Fourier-transformed features. Furthermore, through
sample reduction, nonlinear normalization and the order-
ing of all data sets, 30- and 36-dimensional feature
vectors are generated for the uniform and the nonuniform
frequency resolution, respectively. MLNNs are used for
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classifiers.

Table 5 Examples for dimension of feature vectors which are
MLNN input data

Method Number of Unifom Nonunifom

spatial filters | resolution resolution
Conventional - 70 42
CSP-OVR 2 55 66
CSP-SIM 1 30 36
Conventional-ECOC - 70 42
CSP-ECOC 4 25 30

! T T T T T T 3

G- | e Baseline W fultplication = = = Letter ‘=1 ® ! Rotaton = = = Count | ; 4
'y

52 L 1 L L I I

10 22 30 46 50 & 7
Fig.3 Examples of input patterns for MLNN by Conventional
method [18]
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Fig.4 Examples of input patterns for MLNN by CSP-OVR
method ‘
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Fig.5 Examples of input patterns for MLNN by CSP-SIM
method
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Fig.6 Examples of input patterns for MLNN by CSP-ECOC
method for column-code [10 10 177
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Fig.7 Exan{ples of input patterns for MLNN by CSP-ECOC
method for column-code [ 1011 0]"

Conventional-ECOC: The conventional method, which

employs FFT and the preprocessing, is used to generate
70- and 42-dimensional feature vectors for uniform and
non-uniform resolution, respectively. They are classified
using MLNNss and the ECOC framework. This approach
does not employ the CSP filters unlike the proposed
method. Therefore, we can confirm the efficiency of
using the CSP filters. Three types of codeword to the
ECOC framework, i.e., OPC, Hadamard, and E-ECOC,
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are employed. MLNNSs are used for classifiers.
CSP-ECOC (Proposed BCI System): The details have
been described in Sec. 4. This method provides 25- and
30-dimemsional feature vectors with 4 CSP filters for
uniform and nonuniform resolution, respectively. Coding
is also varied to OPC, Hadamard, and E-ECOC.
Examples of the dimension of the feature vectors,
which are the MLNN input data, are shown in Table 5.
Some examples of MLNN input patterns for Subject 1,
trial 1 and all mental tasks are shown in Figs. 3-7. In
these figures, differences between the MLNN input

patterns generated by various methods can be recognized.

In Fig. 6, the EEGs are projected by the CSP filters,
which are optimized to categorize three mental tasks,
{Baseline, Letter composition and Counting} = 1, against
the other mental tasks, {Multiplication and  Rotation} =
0. In the case of Fig. 7, different CSP filters, which were
optimized to categorize {Baseline, Letter composition
and Rotation} = 1 against {Multiplication and Counting}
=0, were used.

5.3 Classification

MLNNs are used to perform both multiclass and
binary classification modes. MLNN is optimized by the
error back-propagation algorithm. Parameters for MLNN
are determined and are shown in Tables 6 and 7.

Table 6 MLNN parameters for conventional method, CSP-
OVR and CSP-SIM

No Segmentation Seg)
Input node Refer to Table 4 Refer to Table 4
Output node 5 5
Hidden node 20 20
Iteration 100000 5000
Learning Rate 0.01 0.1
Activation Function Tanh - Logistic Sigmoid | Tanh — Logistic Sigmoid
Initial Weight Range +0.1 0.1
Threshold of Rejection 0.6 0.6
Generalization method:
random noise +0.05 - 0.1 +0.05 - +0.1
Table 7 MLNN parameters for conventional-ECOC and CSP-
ECOC
Parameter No Segmentation Segmentation
Input node Refer to Table 4. Refer to Table 4.
Qutput node 1 1
Hidden node 10 10
I i 80000 5000
Learning Rate 0.01 0.1
Activation Function Tanh — Logistic Si id Tanh — Logistic Sigmoid
Initial Weight Range 0.1 $0.1
Threshold of Rejection:
oPC 1.2 1.2
Hadamard 20 2.0
E-ECOC 4.0 4.0
Generalization method:
random noise +0.05 - 0.1 10.05 - +0.1

5.4 Classification performance evaluation and
validation :

To evaluate the classification performance, the
correct classification rate (P.), error classification rate
(P.) and rate of correct and error classifications (R,) are
used.

¢

P =N 100% (18)
N

1

P = 100% (19)
N

4
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N

R =—+<— 20
° N_+N, (20
N, =N_+N,+N, 21

N,, N,, and N, are the numbers of correct classifications,
error classifications, and rejections, respectively.

These experiments involve subject-specific classifica-
tion. The EEG data are individually applied to the BCI
system subject by subject. Each subject’s EEG data
consists of 5 trials in one experimental session. Each trial
comprises 5 mental tasks hence, a total of 25 EEG data
sets are obtained for one session. Four trials and 1 trial in
each session are selected for training and testing data sets,
respectively. Since Subjects 1 and 6 performed 2 sessions
and Subjects 2 and 7 performed 1 session of EEG
recording, there are 8 training trials and 2 testing trials
for Subjects 1 and 6. On the other hand, there are 4
training trials and 1 testing trial for Subjects 2 and 7.

The experiments are validated by 5-fold cross-
validation. The experiments of mental task classification
are independently carried out 5 times by changing the
combination of training and testing data sets. The
classification performances are evaluated in each
independent experiment. As a result, 5 independent
classification results are obtained. They are averaged to
evaluate the final classification performance.

6. Experimental Results and Discussions

The average, maximum and minimum values of the
classification results are listed in Tables 8 and 9. In
Conventional-ECOC and CSP-ECOC, the E-ECOC,
which requires 15 elemental classifiers, is selected for
the highest generalization.

6.1 Overall results

The classification results for nonsegmented data are
demonstrated in Tables 8 (a), (b), (¢), and (d) for
Subjects 1, 2, 6 and 7, respectively.

For Subject 1’'s EEG data set, the conventional
method [18], [19] works well; however, the proposed
CSP-ECOC  method can improve the correct
classification rate P, from 88% up to 92% for the
uniform frequency resolution, and up to 90% for the
nonuniform frequency resolution. The other methods
provide roughly the same correct and error classification
rates as the conventional method.

The CSP filter works well on Subject 2°s EEG data
set. The correct classification rates P. are obviously
increased by using any CSP filters. Moreover, the error
classification rates P. can also be decreased to 0% by
CSP-OVR and CSP-SIM methods. The greatest improve-
ment is provided by the proposed CSP-ECOC method
with the nonuniform frequency resolution.

For Subject 6’s data set, the results also indicate that
the classification performances are obviously upgraded.
The correct classification rates P, are increased from
66% to 84%. In addition, the error classification rates P,
are also significantly decreased from 26% to 6% by the
CSP-ECOC method with the nonuniform frequency
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resolution.

Table 8 Overall experimental results for nonsegmented data

(maximum/minimum values are given in parentheses)

(a) Subject 1

(maximum/mini val y s th ) Method Uniform Nonuniform
aximum/minimum values are given in parentheses 7. P, R( 7 7 R
) cON 5210 1230 087 7969 1338 086
(a) Subject 1 (8330/80.90) | (143011030) | (089085 | ®0407890) | (147011400 | (0.890.85)
Tnitorm NonamiTonm TSP- 670 580 091 5] 150 088
Method 7 o v = - = OVR (869086.40) | (8905870) | ©91091) | ss6823) | 1320079 | 090087
< e X < e X CSP- 5050 210 087 7715 1887 081
CON 5300 400 0.96 83.00 6.00 0.93 SIM 812080200 | (1270m160) | 087087 | (78057565) | q9.151857) | 081081
(90.00/86.00) (6.00/2.00) (0.98/0.94) (90.00/86.00) (6.00/6.00) (0.94/0.93) = = - -
CSP- 8800 500 0.94 8400 600 093 £ 8l 20 20 o L . 088
s @800ma00) | woomony | ossmsny | (ssoomzon | coooteoy | (obnss) ECOC | 81908110) | (1030950 | 089089) | (795079.000 | (1280/1040) | (0.88/0.86)
ok £809 500 on 800 oo0 9% Ecoc | @nrpaes sy | @ouns) | arsomso nmmsey | sunse
SIM 900086000 | (12001000 | 096088 | 860082000 | (10.00800) | (0.890.91) ‘ (87.75/86.65) | (10.60/8, (0.21/089) | (7.5 ) | (127980) ] )
CON- 30,00 T0.00 0,90 30.00 1000 090 .
ECOC (9200/8800) | (14.00/800) | 0.92086) | (9200588000 | (1400800) | (0.92/086) (b) Subject 2
CSP- 92.00 3,00 0.96 30,00 500 0,94 Uniform Nonuniform
ECOC 92.0090.0) | (6.000.00) | (1.00/0.94) | (94.00/86.00) | (10.00200) | (0.9800.90) Method : 5
P, P, R Pe i Re
. pr— 7150 1760 080 7569 5% 083
(b) Subject 2 (721070.70) | (18201680) | ©80080) | (76027498 | 6501502 | 083082
Tnitorm Non-oriform CSP- 7800 1560 083 7868 1520 084
Method 7 7 R 7 P R OVR (78.20/77.80) (16.20/14.00) (0.84/0.83) (80.31/74.45) (15.59/14.89) (0.84/0.83)
< e e e e CSP- 7370 1730 081 7779 1856 081
CON £0.00 400 0o S£00 0:00 100 SIM (76.107260) | (18801590) | (083079) |- 78407736) | (19.4001792) | ©.810.80)
(84.00/76.00) (8.00/0.00) (1.00/0.90) (88.00/80.00) (0.00/0.00) (1.00/1.00) = = =
CSP- 86.70 0.00 1.00 88.00 0.00 T00 CON- 7820 20.10 0.80 78.50 16.70 0.82
< 2COC ) s 3 )
OVR (88.00/8400) | (0.000000) | (1.00/100) | 900058400y | 000000y | 1007100y ECOC (7880777.40) | (20.70/19.30) | (0.80/079) | (79.05/77.73) | (17.001630) | (0.83/0.82)
aap- 8800 000 190 22,00 000 100 Pl seomaa | cisonyio mns] masessy | geses 81039
SIM 8800588000 | 000000) | (Loonoo) | 920002000 | 0000000 | (1.00/1.00) 2 (8260/80.60) | (1940/17.40) | (083081) | 839418350 | (16.41/16.00) LS U064
CON- 8800 700 0.96 8800 100 0.9 ]
ECOC | (90.0086.00) | 4004000 | 096/096) | (90.008600) | ®00200) | (0.98/0.92) (c) Subject 6
CSP- 800 800 092 96.00 100 0.96 Uniform Non-uniform
ECOC (900086.00) | (10004000 | ©.960.90) | 96.00/96.00) | (4.0014.00) | (0.96/0.96) Method = >
i P, R i P, Re
. P 700 2K 065 3605 3508 069
(c) Subject 6 (4780146.40) | (25.102440) | 066065) | (569/5512) | (26062423) | 0.7000.68)
Unitorm oo CSP- 50,00 2960 0.67 590 2641 069
Method m r = = - = OVR 611055900 | 30902840) | 068065) | (60.03/5856) | 73172571 | (069069
S Lo & e e TSP- 5560 30.20 065 E3H 2790 068
CON 560 2.0 0.72 7000 8,00 0.90 SIM (56.00/55.00) | (30.60/29.60) | (0.65064) | (59.08/5730) | (285727.10) | 0.680.67)
(70.00/60.00) (30.00/24.00) (0.74/0.67) (74.00/66.00) (10.00/6.00) (0.92/0.88) = — = =
TSP- 7533 T7.30 081 8200 800 091 CON. o 370 2920 067 o ST2 2811 X3
OVR 76007400 | (200014.00) | 084076 | 840080000 | (10006000 | 093089 ECOC | (595055800) | G0.1072850) | (067M66) | (5975157.77) | (29.54/2787) | (0.67/0.67)
TSP- 867 1533 082 7600 1200 084 ok 6.1 3079 067 o691 oLz o
SIM 700066600 | (180014000 | 083079 | (780072000 | 160012000 | 087082 ECOC | (64106340) | (31.4072980) | (068067) | (682016539 | @33.60i30.00) | (0.69/0.66)
CON- 68.00 2200 0.76 70.00 8.00 0.90 .
ECOC_ | (120064000 | 240020000 | 077074) | (4008000 | 000600y | 092088 (d) Subject 7
TSP- 5100 7200 074 8400 .00 0.93 Uniform Nonuniform
ECOC | (680060.00) | 260018000 | ©78071) | (86.00582.00) |  8.0014.00) | 0.950.91) > > : >
P, P, R I P, R.
E 5855 1701 079 855 1638 081
(d) Subject 7 (69.60/66.80) | (18301590) | (081078) | (69.60/66.80) | (1800115000 | (©.82/0.79)
Triform Nomunitorms 6962 201 077 6887 2126 076
Method = 5 = - B = (71606750 | (23101720) | ©801075) | (7000i6820) | (24801830) | ©.7910.74)
e ) e < Le 3 6777 1379 082 21 1958 0.77
CON 8000 1600 .83 81.60 1200 0.87 1186450 | @iedno6n) | 087077) | 68106482 | 021/1928) | (0.780.76)
(84.0076.00) | (20001200) | (087079 | (840078000 | 0.00m200) | 087079 = =
CSP- 7280 20.00 078 8160 1200 087 1042 s LB 078 . o 079
2 y 2 9.9 :
OVR (76006800 | 240011600) | (083074) | ®100m000) | 2000800) | ©.91080) (71.00/69.90) | (002/1940) | (O.780.78) 1 (72007120) | 030/187) | (0.79/0.78)
CSP- 7360 21,60 077 7280 16.50 081 - 2049 o8l 1319 s 82
SIM 76002000 | 240020000 | 079075) | (760006800) | @0.0011600) | (0.830.79) (727002000 | (16.71/1620) | (082081)1| G46771.28) | (16.50/1500) | (0.830.82)
CON- 80.00 18.40 0.81 R1.60 15.20 084 CON = Conventional Method, CON-ECOC = Conventional-ECOC
ECOC (84.00/76.00) (20.0016.00) (0.84/0.79) (84.00/76.00) (16.00/12.00) (0.87/0 83)
CSP- 8160 1280 0% 400 1200 0.8 . .
ECOC (8400/80.00) | (1600/1200) | (0.88083) | (81.0084.00) | (12.00/12.00) | (0.88/0.88) 6.2 Uniform versus nonuniform frequency

CON = Conventional Method, CON-ECOC = Conventional-ECOC

In the case of Subject 7’s data set, the classification
performance is increased only by the proposed CSP-
ECOC method. The correct classification rate P. is incre-
ased to 84% with the nonuniform frequency resolution.

The classification results for the segmented EEG data
are shown in Table 9. In this case, we can summarize that
the CSP approaches can enhance the classification
performance. For instance, in the case of Subject 1, the
proposed CSP-ECOC method can improve the correct
classification rate from 82.1% to 86.7% with the
nonuniform frequency resolution. In the case of Subject
2, the correct classification rate can also be enhanced
from 71.5% to 83.74%. As well, in the case of Subject 6,
the accuracy rate is upgraded from 47% to 66.97%.
Lastly, in the case of Subject 7, P. can be refined from
68.55% to 73.19%. Most CSP methods can improve the
performance, except for the CSP-SIM method in the
case of Subjects 1 and 7. P, is a slightly degraded to
around 2%.

The reason for the improvement may be some
benefits of CSP spatial filtering that cause increases in
discriminated information on input patterns.

Table 9 Overall experimental results for segmented data
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resolution

Classification performances based on the two kinds
of the sample reduction methods, that is, the uniform and
nonuniform frequency resolution, are also listed in
Tables 8 and 9, on the left and the right side, respectively.
In most cases of nonsegmented data, the error classify-
cation rates are depressed in the nonuniform frequency
resolution mode. For examples, explicitly, in the case of
Subject 6’s nonsegmented data, not only are the error
classification rates substantially decreased from
15.33%~26.00% to 6.00%~14.00%, but the correct
classification rates are also increased from
66.00%~68.67% to 70.00%~84.00%. In the case of
Subjects 2 and 7, the results also show the same trend as
the case of Subject 6.

However, in the case of Subject 1, the classification
performance cannot be improved by using nonuniform
frequency resolution. Improvement upon using the
nonuniform frequency resolution is dependent on noise
in the high-frequency bands. The nonuniform frequency
resolution method, which compresses data in the high-
frequency bands more than in the low-frequency bands,
can suppress the contaminated noise well in the high-
frequency region. In the case of Subject 1, we assume
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that initially, EEGs are fairly clean, so an excellent
classification performance can be obtained, no matter
which method of sampling reduction is applied.

Unfortunately, the nonuniform frequency resolution
for the segmented data, significant improvement cannot
be obtained. The correct Cclassification rates are
insignificantly improved, but the error classification rates
are also degraded.

6.3 Non-spatial filtering ECOC versus CSP
filtering ECOC

In this paper, we also compare results between
nonspatial filtering and CSP filtering when both are
applied to the ECOC framework in order to prove that
the improvement does not inherently come from the
ECOC techniques, but also is a result of the benefits of
CSP filtering. The experimental results shown in Tables
8 and 9 indicate that although both methods generally
provide good performance, the CSP-ECOC method can
provide more improved performance. The accuracy rates
are improved from 58.70%~90.00% to 63.70%~96.00%.

From these experimental results, we can confirm the
efficiency of using the CSP filtering.

Table 10 Classification results for different coding method for
Subjects 1,2, 6, and 7

(nonsegmented data /nonuniform frequency resolution)

(a) Conventional-ECOC

Codin Subject | Subject 2
s P, P, R P P, R
E-ECOC 90.00 10.00 0.90 88.00 4.00 0.96
C (92.00/88.00) (14.00/8.00) (0.98/0.90) (90.00/86.00) (8.00/2.00) (0.98/0.92)
Hadamard 88.00 12,00 0.88 84.00 16.00 0.84
(88.00/88.00) (12.00/12.00) (0.88/0.88) (84.00/84.00) (16.00/16.00) (0.84/0.84)
OPC 81.20 18.80 081 83.60 15.20 085
(82.00/80.00) (20.00/18.00) (0.82/0.80) ﬂ /78.00) (18.00/12.00) (0.88/0.81)
. Subject 6 Subject 7
Coding P, 5 R P, > R
A . 2 . 3
E-ECOC 70.00 800 09 81.60 15.20 0.84
C (74.00/68.00) (10.00/6.00) (0.92/0.88) (84.00/76.00) (16.00/12.00) (0.87/0.83)
Hadamard 68.80 8.00 0.90 81 60 15.20 0.84
(72.00/66.00) (12.00/6.00) (0.92/0.85) (84.00/76.00) (16.00/12.00) (0.87/0.83)
OPC 68.40 9.20 0.88 80.00 16.00 083
(72.00/66.00) (14.00/8.00) (0.9/0.84) (88.00/76.00) (20.00/12.00) (0.88/0.79)
(b) CSP-ECOC
) Subject 1 Subject 2
Coding P, JP ERC P, 4
A A A A
E-ECOC 90.00 6.00 094 96.00 4.00 0.96
- (92.00/88.00) (10.00/2.00) (0,98/0.90) (96.00/96.00) (4.00/4.00) (0.96/0.96)
Hadamard 85.00 6.00 093 90.00 6.00 0.94
(90.00/80.00) (12/6) (0.92/0.85) (92.00/88.00) (8.00/4.00) (0.96/0.92)
OPC 84.00 4.00 095 84.00 6.00 093
(88.00/80.00) (6.00/2.00) (0.98/0.93) (88.00/80.00) g.(l)/-’.(‘()) (0.95/0.92)
. Subject 6 Subject 7
Codin;
N A P, R P, P, R
E-ECOC 84.00 6.00 093 84.00 12.00 0.88
(86.00/82.00) (8.00/4.00) (0.95/0.91) (84.00/84.00) (12.00/12.00) (0.88/0.88)
Hadamard 78.00 6.00 093 84.00 16.00 0.84
(80.00/76.00) (8.00/4.00) (0.95/0.91) (84.00/84.00) (16.00/16.00) (0.84/0.84)
OPC 78.00 10.00 0.89 78.40 21.60 078
(80.00/76.00) (8.00/4.00) (0.95/0.91) (80.00/76.00) (24.00/20.00) (0.80/0.76)

6.4 Comparison on coding in ECOC

The performance of ECOC depends on the length of
the applied codewords, which is the same as the number
of classifiers in the ensemble estimation. This is still an
open issue for the ECOC framework in our study. In the
experiments, 3 types of standard coding methods are
performed and compared, i.e., OPC, Hadamard coding,
and E-ECOC, in which 5, 7, and 15 classifiers are
required, respectively. The theoretical performance of the
correcting code has been mentioned in Sec. 3.

Table 10 shows results of using different coding
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methods with nonuniform sampling reduction and
nonsegmented data. For the other modes, the results
show the same trends as well. The E-ECOC with 15
classifiers overcomes both Hadamard coding with 7
classifiers and OPC with 5 classifiers because the
increased length in the codewords can achieve a large
capacity of error correction.

The increase in the codeword length in ECOC requires
more classifiers and a long computation time in the
learning process. The appropriateness of the coding
method is dependent on the applications and
computational tools.

The simulation results indicate that applying CSP
filtering can improve the accuracy of the three coding
methods.

7. Conclusions

We proposed a new BCI system, which combines
CSP filtering and the ECOC framework to realize
multiclass classification with an error-correcting
capability. Also, a new sampling reduction method, that
is, the nonuniform frequency resolution, was also
proposed. The important information in the lower
frequency region was precisely analyzed, and the
contaminating noise in the high-frequency region was
well suppressed. The classification performance of the
proposed BCI system was compared with those of many
conventional and related BCI methods. Furthermore, the
effectiveness of using CSP filtering was examined, and
several coding methods were compared. In order to
confirm the general usefulness, the EEG data of 7
subjects, which are available on the web site of Colorado
State University, were used. The experimental results for
4 subjects show that the proposed BCI system can boost
the classification rate from 66%~88% to 84%~96% and
suppress the error classification rates from 4%~26% to
4%~12%. Almost the same results were obtained for the
other 3 subjects.
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