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Abstract

An automatic switching method, used for the com-
bined fast adaptive filter algorithm consisting of the FTF
and the normalized LMS algorithms, is proposed in this
paper. Switching between the FTF and the NLMS algo-
rithms is controlled by the difference of the MSE sequence,
which corresponds to the slope of the MSE or the speed
of variation of the unknown system. If the difference ex-
ceeds a threshold, then the FTF algorithm is selected,
and vice versa. Simulation results, in a stationary as well
as a nonstationary environment, show that the combined
algorithm with the proposed switching method can pro-
vide less computations compared with the RLS algorithm,
while maintaining the same performance as that of the
RLS algorithm. Furthermore, compared with the FTF
algorithm, it can achieve numerically stable operation.

1 Introduction

The FTF algorithm, which has been introduced to
reduce the computational load of the RLS algorithm,
presents many desirable features such as fast convergence
rate and fast tracking. These features, however, can be
preserved only when the implementation of the FTF al-
gorithm is numerically stable. Unfortunately, the stable
implementation of the FTF can not last for a long time
without rescue, especially in a nonstationary environment
where the forgetting factor should be less than one in order
to obtain tracking capability [1]. On the other hand, the
widely used NLMS algorithm, though has a slow conver-
gence rate, is simple and numerically stable. Apparently,
the FTF and the NLMS algorithm have some complemen-
tary characteristics. So if these two algorithms are com-
bined, several desirable features of both algorithms can be
preserved, while drawbacks can be overcome.

We have proposed a combined fast adaptive filter al-
gorithm [2]. The main idea behind it is that whenever the
tap weights have a large deviation from their optimum

values, a large error results, the FTF algorithm is used
to quickly turn the tap weights back to close proximity
of their optimum values. Since the FTF can provide the
least square solution like the RLS algorithm, usually only
2M - 3M iterations can make the tap weights close enough
to the optimum values . After that, the NLMS algorithm
is used. Thus, fast convergence rate can be obtained while
numerical instability is avoided. When the unknown sys-
tem is slowly varying with time, we usually need not use
the FTF algorithm, since the NLMS algorithm is capa-
ble of tracking the slow time varying system well [2]-[4].
When the unknown system is varying with time fast, the
fast tracking can be obtained by periodically implement-
ing the FTF algorithm. The improved performance ob-
tained by using the proposed algorithm was shown in [2].

The remaining problem is how to automatically
switch between both the NLMS and the FTF algorithms.
An automatic switching method is proposed in this paper.
We first briefly describe the proposed combined adaptive
algorithm. Then, we introduce the automatic switching
method. Finally, the proposed method is verified by com-
puter simulations. Various situations in a stationary and a
nonstationary environments are taken into account in or-
der to demonstrate the efficiency of the proposed method.

2 Combined Adaptive Filter Al
gorithm

Figure 1 shows the timing of operations by using the
proposed algorithm. We may consider an adaptive pro-
cess as being a dynamic electric system, which consists
of a transient period and a steady-state period. We let
the FTF algorithm always perform in the transient period
(period 1, 3, 5), and the NLMS algorithm in the steady-
state period (period 2, 4). The interval of implementing
the FTF algorithm is fixed (for example 3M iterations) in
order to guarantee the stability. Automatically switching
from one algorithm to the other is controlled by using the
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Figure 1: Timing of operations by using proposed method

difference of the MSE sequence. If the difference exceeds
a threshold, then the FTF algorithm is used, otherwise,
the NLMS algorithm is used. The switching method will

be discussed in the next section.

In order to obtain fast tracking when the unknown
system varies fast with time and avoid the possible in-
stability produced by the FTF algorithm, the reinitial-
ization of the FTF algorithm is periodically implemented
in period 5. We may think that the discontinuities or
bias caused by the reinitialization will produce unbearable
large MSE. This can be true if we choose the reinitializa-
tion parameters § and A improperly. There are two rea-
sons that can cause discontinuities. Firstly, the transient
produced by removing the augmentation of series zero tap
inputs before reinitialization: This make the desired sig-
nal d(n) undergo about M iterations of transient period,
in which d(n) do not contain the correct information of the
unknown system. This problem can be solved by choosing
) < 1 to avoid accumulating incorrect data. Secondly, the
near singular of the input correlation matrix, which can
happen when the reinitialization parameter § is too small.
By increasing §, the possible singularity of the correla-
tion matrix can be avoided. The bias produced by large 6
can be suppressed by reducing A. Generally speaking, by
suitably choosing & and A, we can obtain a tracking perfor-
mance like that of the RLS algorithm without introducing
noticeable discontinuities.

Figure 2 shows the flow chart of the combination
of the two algorithms. We can see that the difference be-
tween the FTF and the NLMS algorithm is the calculation
of the Kalman gain vector kp(n). In the FTF algorithm,
kpz(n) is calculated by using the relationships between for-
ward and backward prediction instead of complex matrix
manipulation. We note that all the information contained
in the inverse input correlation matrix ~(n) is also con-
tained in kp(n). So ky(n) is the true Kalman gain. In
the NLMS algorithm, however, ka(n) is replaced by a
simple scalar step size multiplied by the tap-input vec-
tor. Apparently, kar(n) is only an approximation of the
true Kalman gain. Experiments show that the nearer the
bottom of the error surface, the better the approximation.

There are several important features of the proposed
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Figure 2: Flow chart of proposed method

algorithm. First, we note that the implementation of the
FTF algorithm is within about 3M iterations. Keeping
the FTF algorithm stable within this interval is relatively
simple. Thus, several important advantages of the FTF
over the NLMS, such as fast convergence rate and fast
tracking, can be utilized. Second, the gear-shifting prop-
erty can be realized in the proposed algorithm, as a small
X can be used in the FTF to provide fast tracking in tran-
sient, and a small step size used in the NLMS to provide
small misadjustment in steady state operation.

3 Automatic Switching Method

In the combined adaptive algorithm, switching be-
tween the two algorithms is controlled by the difference of
the MSE sequence, which is used for detecting the slope
of the MSE or the speed of variation of the unknown sys-
tem. In order to calculate the difference of the MSE, we
first write the error produced between the desired and the
adaptive filter output [5]
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o(n) = d(n)—w%"(n-1)u(n)
= e,(n) +wiu(n) — % (n - 1)u(n)

= eo(n) + a,,(n) (1)

where w, is the tap-weight vector of the unknown system,
e,(n) is the error produced by the measurement noise, and
@,z(n) is the excess error produced by both weight noise
and weight lag.

Suppose all the data are real, the squared error of
a(n) is

() = (eofn) + aes(n))?
€(n) + 20ez(n)eo(n) + ag(n)  (2)

The MSE of ..(n) can be obtained by taking the
average of both side of Eq.(2)

where we suppose that the mean value of e,(n) is zero, and
also it is independent of aez(n) so that 2aez(n)e,(n) ~ 0.
o? is the variance of the measurement noise.

The difference of the MSE can be written as

Ac?(n) = o*(n + 1) — a?(n)
= (&n+7) - e(n)) + (aZ(n + ) — % (n))
~ (0% (n+7) - ol (n)) = Aag,(n) (4)

where T is a time delay constant. The following rela-
tive difference of the MSE is used to detect the timing
of switching the algorithms.

Aca?(n)

o?

Aaf(n) = (8)

Experiments show that using Eq.(5) instead of
Eq.(4) is more effective. This is because the MSE caused
by both weight noise and weight lag can be considered asa
misadjustment from o2. For example, suppose Aa?(n) =
0.05. If 02 = 0.001, the misadjustment is 500%. However,
if o2 = 0.01, the misadjustment is only 50%. In the pre-
vious case, the FTF algorithm should be used, in order
to obtain fast tracking. In the latter case, however, the
NLMS algorithm should be used, in order to obtain a small
final misadjustment. On the other hand, we know that the
performance of the FTF algorithm is closely related to o?.
If 0% = 0, the FTF achieves its best performance. When
o? increases, however, the superior convergence rate and
tracking speed of the FTF algorithm over the NLMS al-
gorithm becomes lost [2][5]. So when the combined algo-
rithm is implemented in a nonstationary environment, the
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Figure 3: Calculating difference of MSE

FTF algorithm should be used less frequently for a large
o?. Apparently, Eq.(5) satisfies these requirements.

In summary, as shown in Figure 3, we can calculate
the difference of the MSE as

sao) = IEN_ (=)

A = % o) 7
i=n—L+1
hm) = Y o) ®)

t=n—2L+1

where fm;n is the estimate of the minimum MSE, and L
is the time delay constant as well as the number of sam-
ples used for averaging the MSE. We note that AJ,(n)
obtained from Eq.(6) is always positive. This is because
we want to detect the slope of the MSE, whenever the
MSE increases or decreases. Otherwise, the tracking per-
formance may be degraded as shown by dashed line in
Figure 3, since AJ,(n) becomes minus when the MSE de-
creases, it will never exceed a threshold so that the NLMS
is used. ‘

The threshold © defined in Figure 3 is

0=3KI (9)

where K is a positive constant, which represents the slope
of the MSE or the speed of variation of the unknown sys-
tem. .

In practical situation, Egs.(6) and (9) can be rewrit-
ten in another equivalent simple forms

AJy(n) = |Ji(n) = Jo(n)] (10)
0 =KJpinl =K'L (11)

We note from Eq.(11) that if Jp;, does not change
with time, the threshold of Eq.(11) becomes a constant.
The value of the threshold can be chosen experimentally.
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In some applications, Jrmin may vary with time, and
the threshold of Eq.(11) also varies with time. In this
case, Jmin can be replaced by J(n) = min{J;(n), Jo(n)},
so that Eq.(11) becomes

0 =KJ(n)L (12)

4 Simulation and Discussions

Measurement noise

va(n)
Unknown \
System
vi(n) ) e(n
Random noise ' Second-order ) ¥ )
generator AR model /
Adaplive
transversal liller

Figure 4: Block diagram of system identification

In this section, we will do some simulations on system
identification to show the efficiency of using the proposed
method.

The simulations are implemented in a stationary and
a nonstationary environment [6]. In the stationary envi-
ronment, we suppose the unknown system is fixed, with
some jumping parameters. In the nonstationary environ-
ment, we study the unknown system that has the time
varying parameters.

4.1 Description of Simulation
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Figure 5: Change of phase of pole in unknown system

The block diagram of system identification is shown
in Figure 6. The Unknown system is supposed to be a
second-order AR model with adjustable parameters. The
transfer function of the unknown system can be written
as

I S
1+ 012_1 + GQZ—2
where by = 1,a; = —2rcos(6),a; = r®. In the simula-
tions, we suppose that 7 = 0.85 is fixed, and 4 is variable.
The zero-mean white noise {v;(n)} is put through an-
other second-order AR model to produce colored tap input.

H(z) (13)

{u(n)} with a variance of 02 = 1. The eigenvalue spread
is adjusted to about 200 in the simulations. {v,(n)} rep-
resents the measurement noise with zero-mean and vari-
ance a?a = 0.001. Each experiment is repeated 100 times,
each time using an independent realization of the process
{v1(n)} and {va(n)}. The number of tap weights is set to
50 in all simulations. The computation precision is 32-bit
floating-point arithmetic.

In the combined algorithm, switching from the NLMS
to the FTF is determined by a threshold. Choosing the
value of the threshold mainly depends on practical ap-
plications. In every simulation that follows, we choose
L =10 and K’ = 0.02 in Eq.(11) so that the threshold
© = 0.2. The implementation of the FTF algorithm is
fixed to 3M iterations. The step size used in the NLMS
algorithm is j/||u(n)||*.

4.2 Simulation Results

Simulation 1: Fixed Unknown System with Jumping
Parameters

In this simulation, we study the convergence perfor-
mance of the combined algorithm and compare the result
with those of the NLMS and the RLS algorithms.

The change of the phase of pole in the unknown sys-
tem is shown in Figure 7. In the first period(n < n;), § =
% is used. 6 is changed to § in the second period(n > n;).

The learning curves obtained by three algorithms are
shown in Figure 8(a). In Figure 8(b), we also show the
probability. This means how many times FTF is used
among 100 independent implementation. If FTF is used
in every implementation, its probability will be 1. So Fig-
ure 8(b) clearly shows the interval of implementation of
two algorithms. By using the proposed switching method,
the FTF algorithm is implemented in the first 3M sam-
ples, and when the unknown system suddenly changes at a
jumping point n;, the algorithm is automatically switched
from NLMS to FTF for another 3M implementation.

From Figure 8, we can see that the convergence per-
formance of NLMS is unsatisfactory, especially when the
eigenvalues are widely disparate. By combining NLMS
and FTF, performance is greatly improved, resulting in
the convergence rate the same as RLS in initialization pe-
riod. In reinitialization period, however, the convergence
of the combined algorithm is faster than RLS, because
fewer previous tap inputs are used. On the other hand,
by using a small step size of NLMS, the combined algo-
rithm can obtain smaller misadjustment compared with
RLS.
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Figure 6: Convergence performance for unknown system
with jumping parameters. Proposed: TM FTF(§ =5, A =
0.95)+NLMS(i = 0.2); RLS: § = 5, A = 0.95; NLMS: i =
1; (2) Learning curves, (b) Probability of implementing
FTF

Simulation 2: Slow Time Varying Unknown System

The purpose of this simulation is to compare the
tracking ability of the combined algorithm with that of
the RLS algorithm.

The change of the phase of pole in the unknown sys-
tem is (see also Figure 7)

w|y

(n

IA

n,)

6(") =\ 2 1 9,in (K—L';;_";f> (n>n) 4
where 8, is a constant, its value represents the speed of
variation of the unkown system. In this simulation, we
choose 8, = 7 /80.

Aopt used in RLS can be obtained experimentally by
adjusting A and by making the sum of the total extra MSE
TN . Jiot(n) to its minimum [2], where n, is supposed
to be the measurement point at which the algorithm is
converged, and the unknown system begins to vary with
time. We choose n, = 150, and get A,;; = 0.968 in this
simulation.

The simulation results are shown in Figure 9. The
proposed method implements FTF in the first 3M itera-
tions. In the remaining part, NLMS is dominantly used.
From the result, we can see that when the unknown sys-
tem is varying with time slowly, the NLMS can provide the
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Figure T: Tracking performance for unknown system with
slow time variant parameters. Proposed: TM FTF(é = 5,
A = 0.968)+ NLMS( = 0.2); RLS: § =5, A = Appy =
0.968; NLMS: i = 1; (a) Learning curves, (b) Probability
of implementing FTF

tracking performance similar to that of the RLS algorithm,
even under the condition of wide spread of eigenvalues.

Simulation 3: Fast Time Varying Unknown System

This simulation is used to illustrate the superiority of
the tracking ability by using the combined algorithm over
NLMS, when the unknown system varies fast with time.

In this simulation, we choose 6, = /10 (A, = 0.9).
This further increases the variation of the unknown system
(see Figure 7).

The simulation results are shown in Figure 10. When
the speed of variation of the unknown system is increased,
the proposed method automatically switches from NLMS
to FTF more frequently, which results in the tracking per-
formance almost the same as that of the RLS, but con-
siderably better than that of NLMS. The discontinuities
caused by periodically implementing FTF is unnoticeable.

5 Conclusion

We summarize the performance of the proposed com-
bined algorithm with automatic switching method com-
pared with other adaptive filter algorithms in Table 4.
From the table, we can conclude that by combining the
FTF and the NLMS algorithms, a performance similar to
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that of the RLS algorithm and a computational cost com-
parable to that of the LMS algorithm are obtained. Thus,
the proposed method demonstrates several desirable fea-
tures including fast convergence, fast tracking, small mis-
adjustment, computational simplicity and numerical sta-
bility. Although the experiments shown in-this paper are
only involved in the field of system identification, the pro-
éosed algorithm is applicable to other fields as well.

Table 1 Summary

RLS Fast RLS
Properties NLMS Proposed
A=l A<l =1 A<l

Convergence rale X O O O O O
Misadjustment X (OIFAN KON PAN O
Tracking D x O > O O
Computational load O X|IX1010O O
Numerical stability O O O X | X O

A :Dependon X D : Dapend on application

O :600d X :Bad
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