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ABSTRACT

This paper investigates effects of order assign-
ment(OA) on the numerator and the denominator of
a separate form of IIR adaptive filters. The filter co-
efficients are adjusted using the equation error(EE).
The system identification error is approximately pro-
portional to the EE as the OA approaches toward an
optimum one. Next, an automatic OA method is pro-
posed. The OA is gradually adjusted so as to minimize
the EE. The optimum OA can be tracked for time vary-
ing systems. It is also demonstrated through simulation
that the IIR adaptive filters can escape from the unsta-
ble state.

INTRODUCTION

For system identification problems, such as noise
and echo cancellation, FIR adaptive filters are mainly
used for their simple adaptation and numerical stabil-
ity. When the unknown system is a high-Q resonant
system, having a very long impulse response, IIR adap-
tive filters are more efficient for reduction in the order
of a transfer function.

It is to be noted here that a number of IIR or IIR
like methods have been proposed both in adaptive signal
processing and system identification community [1]-[4].
However, the class IIR itself comes off a more general
ARMAX model family[5]. IIR filters can be classified
broadly into two groups according to the error criteria,
used for adaptation. One is the equation error and the
other is the output error. Though it has been shown
that these two forms of error are equivalent in the sense
that any of them can be used as the minimization crite-
rion [6], the output error corresponds to actual transfer
function error, whereas the equation error is a filtered
version of it [7][8][9]. One way to realize the equation

error IIR adaptive filter is a separate form, in which the
numerator and the denominator are separately realized
and adjusted.

There exist some methods to estimate optimum or-
der for non adaptive system identification problems; one
of them is Akaike’s Information Criterion (AIC) [10],
which uses the final prediction error to calculate opti-
mum order in least square problems. Other methods,
also have been proposed such as in speech processing
problems, [11][12][13]. However, it seems that investi-
gations around the “separated realization of the IIR”
adaptive filters, are rare. Methods for estimating opti-
mum tap assignment for a given number of total taps
may not be easy available for this particular structure
of the IIR filter.

However, in the actual applications of an IIR adap-
tive filter, the order of the unknown system is not known.
In this case, it is very important to estimate the total
order and the order assignment on the numerator and
the denominator. Especially, when the total number of
coefficients is limited, performance of the IIR adaptive
filter is very sensitive to this order assignment. Gen-
erally, the total order of an practical adaptive filter is
fixed but it is possible to distribute the number of or-
ders among the the numerator and the the denominator
of IIR adaptive filters.

In this paper, effects of order assignment in the sepa-
rate realization of the IIR adaptive filter is investigated.
Furthermore, efficiency of the equation error to evalu-
ate the performance of the filters is investigated. Also,
the stability problem in a process of finding the opti-
mum order assignment is discussed. Finally, a method
for automatic tap assignment is shown. Recursive least
square(RLS)[14] algorithm is employed. The system
identification problem is taken into account.

SEPARATE REALIZATION OF IIR
ADAPTIVE FILTER

Network Structure
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Fig. 1 Separate realization of IIR adaptive filter.

A block diagram of the separate realization of the
IIR adaptive filter is shown in Fig.1. H(z) indicates a
transfer function of the unknown system to be identified.
AF,(z) and AF;(z) construct the denominator and nu-
merator, respectively. x(n) is the far end signal or noise
for example. The output of H(z), denoted d(n), is used
as the desired response. d(n) should be canceled out.
Furthermore, the near-end signal s(n) is added at the
terminal 1. A transfer function for s(n) should be unity.
For this purpose, an all pole filter, having a transfer
function {1 — AFa(z)]™! is used after the equation error.
The adjusted weights are copied to this block.

Equation Error Evaluation

From the Fig.1 we see that

y(n) = ya(n) + ms(n) 1)
e(n) = d(n) —y(n) (2)

The error given by Eq. (2) is the equation error. The
z-transform of this error is derived in the following. Let-
ting D(z), X(2), Yu(2), Yi(z), Y(2), and E(z) be z-
transform of d(n), z(n), y.(n), ys(n), y(n), and e(n),
respectively, we obtain

D(z) = H(z)X (2) (3a)
Y,(2) = AF,(2)D(z) (3b)
Yi(2) = AR(:)X(2) (30)
Y(z) = Ya(z) + Yi(2) (3d)
E(z)=D(z) - Y(z2) (3e)

By eliminating D(z), Y,(z) and Y,(z), E(z) can be
expressed as

E(z) = [H(z) — H(z)AFu(z) — AR(2)]X(2) (4)

The ideal solution can be obtained by setting the inside
of the bracket to be zero.

H(z) — H(z)AF,(z) — AFy(z) =0 (5)
From this condition, the following relation is obtained.

H(z) = AF,(2)

T 1- AF,(2) ©)
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Let F(z) and G(z) be used to express the numerator and
the denominator of H(z), respectively. * Equation (14)
shows AF,(z) and AFy(z) correspond to G(z) and F(z),
respectively. Therefore, if AF,(z) and AF;(2) have the
same order as that of G(z) and F(z), respectively, then
we can say a unique ideal solution can exist.

On the other hand, if the condition expressed in
Eq.(5) cannot be satisfied, H(z) should include an error
term AH(z) in Eq.(12), and their relation is rewritten
as

HG)+an() = SCEEAEE
s = 2 ®)

The above equation shows that the equation error F(z)
is weighted by X(z) and 1 — AF,(2) in the transfer func-
tion error criterion. In brief, the outcome of this section
is: Equation(8) indicates that ’equation error’ can not
exactly represent the transfer function error. This raises
the following question: Is it possible to obtain the global
minimum solution by using the equation error? This
problem will be discussed in the later section.

Error Criteria

The equation error is evaluated in this paper using
the following relation.

1 no+K-1

Eeq = 1_( Z I C(l) |2 (9)

i=ng

It is assumed that at n = no the adaptation already
converges. K is the number of error sample taken into
account. As discussed in the previous section that E,,
does not directly correspond to the transfer function er-
ror, therefore, in simulation, efficiency of the equation
error is evaluated by comparing the following error cri-
teria.

o 10log. B = Bar |? ‘
Eimp = 101 90 R (10)
h = [A(0), h(1), ..., A(L — 1))T (11)

har = [har(0), har(1), ... har(L — 1)]T (12)

| . |l indicates Euclidean norm. hy(n) and hap(n) are

impulse responses of H(z) and H4r(z) shown below, re-
spectively.

AFy(z

Har(z) = b(2)

=T AR(?) (13)

respectively.
AUTOMATIC ORDER ASSIGNMENT

A block diagram of automatic order assignment is
shown in Fig.2. This diagram is based on the basic dia-
gram of Fig.1. As shown in Fig.2, two adaptive IIR fil-
ters, AF.in and AF,,, are used in the structure. Both
the adaptive filters are adapted simultaneously using the
respective equation errors. Again it is to be noted that
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Fig. 2 Block diagram of automatic tap assignment
problem.

the input x(n) and the desired signal d(n) is applied
to both the AF,qin and AF,.; at the same time. The
logic block receives the respective errors and does some
" mathematical and logic operations such as squaring, do-
ing cumulative sums and comparing etc. The logic block
is connected with the control block which performs op-
erations such as copy the tap values, increase or decrease
the tap ratio N/D at the end of some interval.

The operation of the diagram is clarified by the fol-
lowing algorithm. N and D indicate the number of taps
in the numerator and the denominator, respectively. In
this paper, the total number of taps, that is N+D, is
assumed to be fixed. 5-;‘:': and ﬂ“‘ indicate tap ratios,
and Wpain and W,y mean the coeﬁicxent vectors for the
main and auxiliary adaptive filters, respectively.

The operation expressed in the following algorithm
is always continued. An example, showing relation be-
tween two tap ratio movings, is illustrated in Fig.3. Solid
lines and dashed lines indicate %“mmf“ and %’-‘“"-, respec-
tively. It is assumed that the tapa)' ratio closed to the
optimum can provide small error. When the tap ratios
approach to the optlmum, g precede that of the main

filter. After -mmain D reaches the optimum, D-“‘ slightly
vibrates around ‘the optimum.

MAIN —
N AUXILIARY ..
D
SYSTEM CHANGE
START F— _ =
- OPTIMUM __--— -~
OPTIMUM - =T
ITERATION

Fig. 3 Example of adjusting tap ratios.

Step 0 Determine the total number of taps N+D,
which is fixed in the following steps.
Step 1 Pre-assign a tap ratio gf“ﬁf“{% to the main
adaptive filter AFy,in, where
Nmam(o) ~ Dmam(o)
Also pre-assign the tap ratio Naus ° to the
auxiliary adaptive filter.
Nauz'(o) = Nmm'n(o) + 1
Dauz(o) = Dmain(o) -1
Define direction parameter §=1
Initialize both adaptive filters with
zero initial tap values:
Wmuin(o) =0
Wauz(0) =0

Step 2 Adapt both adaptive filters simultaneously
for some iterations.

Step 3 Calculate Epmgin(k) and Equz(k),
cumulative sums of errors
€2 in(n) and €2, (n), for corresponding
adaptive filters, in the kth interval.

Step 4 If Ejuz(k) < Emgin(k), go to
Step 5, else go to Step 6.

Step 5 Set the tap ratio and the coefficients of
the adaptive filters such that :

Main adaptive filter:
Nmain(k + 1) = Naur(k)
Dmm’n(k + 1) = Dauz(k)
Wmain(k + 1) = Wau(k)
Auxiliary adaptive filter:

Nauz(k + 1) = Nauz(k) + 4,
Dauz(k + 1) = Dauz(k) - 61
Wauz(k + 1) = W:uz(k)

Go to Step2

Step 8 Set the tap ratio and the coefficients of
the adaptive filters such that:

Main adaptive filter:
Nmain(k + 1) = Nmain(k)
Dmaiu(k + 1) = Dmain(k)
Wmain(k + 1) = W'main(k)
Auxiliary adaptive filter:
Nouz(k+1) = Nguo(k+1) =6
Dauz(k + 1) = Dauz(k + 1) +6
Wauz‘(k + 1) = W;uz(k)

Go to Step 2.

W:,.(k) means the following. In AF,,.(2) at the kth
interval, the highest order term is removed, or the high-
est order term is added with zero coefficients in the nu-
merator or denominator polynomial of z~?

SIMULATION RESULTS

Unknown System and Input Signal

The following transfer function is used for the un-
known system.
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H(z) = e (14)

D(z)=[1-0.92z""+0.82"2 - 0.727% + 0.62™*
—0.527% 4 0.427 = 0.3277 4+ 0.227% 4 0.1279)

As shown in Fig.4, the unknown system has 9 poles
and 2 zeros. The sampling frequency is set to 2 Hz. The
input signal is a white noise. RLS algorithm is used as
the adaptation mechanism.

S E—

0 0.5
Real Axis

Fig.4 Pole-Zero location of the unknown system.
X indicates pole and () indicates zero

Effects of Order Assignment

From Eq.(14), it can be noted that total order of
the unknown system is 11th order, and the total number
of coefficients is 13. By limiting these number to be
invariant, effects of order assignment on the error criteria
described in the previous section are investigated.

Table 1 shows the simulation results. N/D means
ratio of the number of taps of the numerator and the de-
nominator. Adaptation was carried out independently
for each ratio starting from zero initial coefficient.

The optimum ratio is 3/10.

From Table 1, it can be noted that the equation er-
ror E, can monotonously decrease toward the optimum
assignment. Around optimum assignment, E., is pro-
portional to the other error criteria, E;;,,. From these
results, it can be concluded that the equation error as
described in Eq.(9), can be used in searching for the
optimum order assignment.

Stability Problem

Table 1 includes one problem, that is instability,
which can be detected by investigating Eipmp. The im-
pulse response of the adaptive filter diverges when poles
locate outside the unit circle. For examples, in the cases
of N/D=5/8 and 2/11, the filter falls into the unstable
state.

One way to recover from this instability is to recip-
rocate unstable roots inside the unit circle [15] at every
iteration. In this paper, however, the stability problem
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Table 1 Error criteria for different tap ratios without
measurement noise and using 500 data samples.

- <

N/D | E., x10~* | Ein, (dB) ”
12/1 31.82 -15.23
11/2 52.03 -14.47
10/3 52.0 -10.46
9/4 41.0 -8.97
8/5 33.0 -9.05
7/6 33.0 -9.13
6/7 32.0 -11.57
5/8 27.0 | UNSTABLE
4/9 1.50 -33.02
3/10 0.87 -43.86
2/11 | 300 | UNSTABLE
1/12 2.95 -21.73

is further investigated in the following condition. The
ratio N/D initially starts from 5/8, and is successively
changed every 500 iterations toward 2/11. 500 iterations
has been determined in order to guarantee convergence
by experience. The adjusted coefficients for N/D=n/m
are used as the initial guess for N/D=(n-1)/(m+1). Sim-
ulation results are shown in Table 2.

Table 2 Stability analysis in adaptation process.
Ratio N/D is changed from 5/8 to 2/11.
Change of ratio occurs after every 500
iterations.

NID 5/8 4/9 310 211

Eeq |27.000" 328010 |05t |4gaxit

Stable Stable Stable
Bimp | Unstable={ >3 i 1400508 |-27.88 B

Eamp |-22.07dB |-2257dB |43.07dB |-31.280B

Iteration | 0~ 500 |501~ 1000 {1001 ~ 1500( 1501 ~ 2000

The resulting error criteria are a little different from
those in Table 1, because the initial guess of the coef-
ficients are different. The filter falls into the unstable
state in the ratio of 5/8. However, it can recover from
the unstable state in the following adaptation using the
ratios toward the optimum. In Table 1, the result is
unstable for N/D=2/11. However, in Table 3, it can be
stable. This property of the equation error can guaran-
tee the possibility to find the optimum order assignment
in stable state in an adaptive filter. This is an important
outcome of this investigation.

On the contrary, the direct form(output error)



- method can not continue adaptation after the IIR fil-
ter falls into unstable state, because the error diverges
and hence can not be used for adaptation. Furthermore,
if adaptation starts from zero initial condition, the filter
also falls into unstable state like N/D=2/11 in Table 1.

Automatic Order Assignment

Table 1 and Table 2 show a good possibility of au-
tomatic order assignment. Table 2 shows that order
assignment is changed from 5/8 to 2/11 during a to-
tal of 2000 iterations. E., is the smallest at 3/10 ratio,
which is equal to the true unknown system. Simulation
results concerning automatic tap assignment are shown
in Table 3. However, this table shows the simulation re-
sults which does not counter tracking problem and and
all pre-stored tap ratios are checked for comparison.
When the tap ratio is changed to a higher or lower ratio,
previous tap values are copied with the addition of a zero
or removal of the last element, whatever, appropriate.

Table 3 Error for different tap ratios with -20 dB meas-
urement noise and using a block length of 100.

ITER | N/D(MAIN) | Emain | N/D(AUX) | Euue |
100 12/1 0.6605 | 11/2 | 1.4204
200 12/1 0.6063 | 10/3 1.2826
300 12/1 0.4526 9/4 1.0294
400 12/1 0.4226 8/5 0.5065
500 12/1 0.3433 776 0.1900
600 7/6 0.0871 6/7 0.0729
700 6/7 0.0389 5/8 0.0285
800 5/8 0.0140 4/9 0.0047
900 4/9 0.0012| 3/10 | 0.0010
1000 3/10 0.0008 | 2/11 0.0043
1100 3/10 0.0004 | 1/12 0.0067
1200 3/10 0.0001 1/12 0.0028
1300 3/10 0.0001 1/12 0.0013

The Table 3 shows the simulation results for the
case, where, the block size of iteration is taken 100 and
the desired signal is buried in a measurement noise of
-20 dB compared to unity variance. The unknown sys-
tem was kept unchanged. In the table, the tap ratio of
APF4in and its corresponding error E,,in are shown in
second and third column, respectively. Similarly fourth
and fifth columns show the tap ratio of AF,,; and cor-
responding error E,,,. The first column shows the it-
eration level. The fourth i.e., the N/D(AUX) column
contains every possible order assignments. It may be
seen from the column that the 9th entry of the col-
umn(counting from the top) corresponds to the min-
imum error. So,the 3/10 ratio is the optimum order
assignment which agrees with the unknown system.

Figure 5 shows the plots of the simulation results
of Table 3. Figures 5(a) and 5(b) shows the frequency
and impulse responses of the adaptive filter AF,.i, af-
ter 1300 iterations and the unknown system. The solid

s} 0.2 0.8 1

0.4 0.6
Frequency
(a) Frequency response.

0% 20 a0___ 60 80 100
Time

(b) Impulse response

500 1000
(c). Sample

(¢) Equation error.

Figure 5 Simulation results for automatic tap
assignment problem. All plots corresponds to AFngin.
In (a) and (b), solid and dotted lines represent the
adaptive filter after 1300 iterations and unknown
system respectively.

and dotted curves represent the adaptive filter and the
ideal curves, respectively. Figure 5(c) shows the equa-
tion error of the same adaptive filter. From Table 3,
it may be noticed that all pre-stored tap ratios were
checked automatically within 11 blocks i.e., 1100 iter-
ations. However, the equation error in Fig.5(c) shows
a total number of 1300 iterations. The figures clearly
show that the identification is satisfactory.

CONCLUSION

The performance of the adaptive filter has been dis-
cussed based on the order assignment. Around the op-
timum order assignment, the equation error is approx-
imately proportional to the transfer function error. In
some cases, the filter may fall into unstable behavior.
However, this adaptive filter can recover from the un-
stable state as its order assignment approaches toward

801



the optimum. Therefore, it can b= used for finding the
optimum solution. An automatic assignment of order
has been also proposed. '
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