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ABSTRACT

In Blind Source Separation (BSS), a separation block
is trained so as to make the output signals to be statis-
tically independent. In this case, the independency is
able to be increased by changing frequency response of
the output signals, resulting in signal distortion. Es-
pecially, a feed-forward BSS (FF-BSS) has some de-
gree of freedom in the separation block, and the sig-
nal distortion will be caused. The signal distortion
is evaluated as difference between the output signal
and the signal source in the measured signal. Some
equations are derived from the conditions of complete
separation and signal distortion free. They are used as
the distortion free constraint in the conventional learn-
ing process [11]. On the other hand, a feedback BSS
(FB-BSS) has a solution, which can satisfy both com-
plete separation and distortion free. In this paper, the
learning algorithm with the distortion free constraint
is applied to the FF-BSS in time domain. Many kinds
of signal sources are used in simulation in order to
compare the proposed method and the conventional,
in which difference between the output signals and the
measured signals is included in the cost function [4].
Furthermore, the FB-BSS is also evaluated.

あらまし

ブラインド信号源分離では (BSS)は分離回路がその出
力信号が統計的に独立になるように学習される．この
場合，出力信号の周波数特性が変化することにより，独
立性が高まることもあるので，信号歪みが生じる可能
性がある．特に，フィードフォワード形 BSS(FF-BSS)
は分離回路における自由度が高く，信号歪みを生じる可
能性がある．信号歪みの基準を観測信号に含まれる信号
源と考え，完全分離の条件と信号無歪の条件から導かれ
た制約条件を学習に加味する信号歪み抑制学習法を提

案した [11]．信号源を si，観測信号を xi，出力信号を
yi とするとき，信号を分離するとともに yi を xi にお
ける si 成分に近づけることができる．これに対し，観
測信号と出力信号の差を評価関数に追加する従来法で
は，観測信号に含まれる複数の信号源の影響で信号源分
離が充分ではない．一方，フィードバック形 BSS(FB-
BSS)では，信号源分離と信号歪み抑制の条件を同時に
満たす回が存在する．本稿では信号歪み抑制学習法を時
間領域で学習する FF-BSSに適用し，種々の信号源を
使って従来方式 [4]と比較することによりその特性を解
析する．同時に，FB-BSS の有効性も検証する．

1 Introduction

Since, in many applications mixing processes are con-
volutive mixtures, several methods in the time domain
and the frequency domain have been proposed. Two
kinds of proposed network structures are feedforward
(FF) and feedback (FB) structures. Separation perfor-
mance is highly dependent on the signal sources and
the transfer functions in the mixture [7],[9].

BSS learning algorithms make the output signals
to be statistically independent. This direction can-
not always guarantee distortion free separation. Some
signal distortion may be caused. A previously pro-
posed regularization method suppresses signal distor-
tion, however, it has difficulties separating the signals.
Furthermore, even though signal distortion in the BSS
systems is an important problem, it has not been ad-
dressed well up to now [10].

Therefore, we have discussed an evaluation mea-
sure of signal distortion and derived conditions for
source separation and signal distortion free. Based on
these conditions, convergence properties have been an-
alyzed. Furthermore, new learning algorithm for the
FF-BSS system, trained in the time domain, has been



proposed.
In this paper, we analyze the performance of our

new learning algorithm in comparison with the previ-
ously proposed method, by performing computer simu-
lations. The simulation results support our theoretical
analysis.

2 FF-BSS System for Convolu-
tive Mixture

2.1 Network Structure and Equations

For simplicity, 2 signal sources and 2 sensors are used.
A block diagram is shown in Fig.1. The observations
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Figure 1: FF-BSS system with 2 signal sources and 2
sensors.

and the output signals are given by:

xj(n) =
2∑

i=1

Kh−1∑

l=0

hji(l)si(n− l), j = 1, 2 (1)

yk(n) =
2∑

j=1

Kw−1∑

l=0

wkj(l)xj(n− l), k = 1, 2 (2)

2.2 Learning Algorithm

The learning algorithm is derived following the natural
gradient algorithm using mutual information as a cost
function [3].

wkj(n + 1, l) = wkj(n, l) + η{wkj(n, l)

−
2∑

p=1

Kw−1∑
q=0

ϕ(yk(n))yp(n− l + q)wpj(n, q)} (3)

ϕ(yk(n)) =
1− e−yk(n)

1 + e−yk(n)
(4)

The learning rate is given by η.

3 FB-BSS System for Convolu-
tive Mixture

3.1 Network Structure and Equations

Fig. 2 shows an FB-BSS system proposed by Jutten et
all [1]. The mixing stage has a convolutive structure.

The blocks Cij consist of an FIR filter.
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Figure 2: FB-BSS system with 2 signal sources and 2
sensors.

The observations and the output signals are ex-
pressed as follows:

xj(n) =
N∑

i=1

Mji−1∑
m=0

hji(m)si(n−m) (5)

yk(n) = xk(n)−
N∑

k=1
6=j

Ljk−1∑

l=0

cjk(l)yk(n− l) (6)

3.2 Learning Algorithm

The following learning algorithm has been derived by
assuming several conditions [7],[9]. The signal sources
S1(z) and S2(z) are located close to the sensors of
X1(z) and X2(z), respectively. Therefore, the time
delays of Hji(z), i 6= j are slightly longer than those
of Hii(z). Furthermore, the amplitude responses of
Hji(z), i 6= j are smaller than those of Hii(z). These
conditions are practically acceptable.

cjk(n + 1, l) = cjk(n, l)
+ ηf(yj(n))g(yk(n− l)) (7)

f(yj(n)) and g(yk(n− l)) are odd functions.

4 Criterion of Signal Distortion

In this paper, signal distortion is evaluated as the dis-
tance to the observed signal sources[2],[10],[11]. By
doing so, several criteria can be taken into considera-
tion. The signal sources included in the observations
xj(n) are given by Hii(z)Si(z) and Hji(z)Si(z), i 6= j.
Here, the following measures are considered:

σd1a =
1
2π

∫ π

−π

|Hji(ejω)Si(ejω)

− Aki(ejω)Si(ejω)|2dω (8)

σd1b =
1
2π

∫ π

−π

(|Hji(ejω)Si(ejω)|

− |Aki(ejω)Si(ejω)|2dω (9)

σ1 =
1
2π

∫ π

−π

|Hji(ejω)Si(ejω)|2dω (10)

SD1x = 10 log10

σd1x

σ1
, x = a, b (11)



σd2a =
1
2π

∫ π

−π

|Hji(ejω)−Aki(ejω)|2dω (12)

σd2b =
1
2π

∫ π

−π

(|Hji(ejω)| − |Aki(ejω)|)2dω(13)

σ2 =
1
2π

∫ π

−π

|Hji(ejω)|2dω (14)

SD2x = 10 log10

σd2x

σ2
, x = a, b (15)

5 Source Separation and Signal
Distortion in FF-BSS Systems

5.1 Source Separation and Signal Dis-
tortion Condition

For simplicity, a FF-BSS system with 2-sources and
2-sensors, shown in Fig.1, is used. Furthermore, Si(z)
is assumed to be separated at the output Yi(z). This
does not lose generality. Taking the signal distortion
criterion into account, the condition on distortion-free
source separation can be expressed as follows:

W11(z)H11(z) + W12(z)H21(z) = H11(z) (16)
W11(z)H12(z) + W12(z)H22(z) = 0 (17)
W21(z)H11(z) + W22(z)H21(z) = 0 (18)
W21(z)H12(z) + W22(z)H22(z) = H22(z) (19)

The above equations imply two conditions. First, com-
plete source separation, i.e. the non-diagonal elements
are all zero, as shown in Eqs.(17) and (18). Secondly,
signal distortion free, that is the diagonal elements are
equal to Hii(z) as shown in Eqs.(16) and (19). These
equations are further investgated.

From the relations of Eqs.(17) and (18), Hji(z) are
expressed as follows:

H12(z) = −W12(z)
W11(z)

H22(z) (20)

H21(z) = −W21(z)
W22(z)

H11(z) (21)

By substituting the above equations into the relations
of Eqs.(16) and (19), Hji(z) can be removed, and the
following equations consisting only of Wkj(z) can be
obtained.

W11(z)W22(z)−W12(z)W21(z) = W22(z) (22)
W11(z)W22(z)−W12(z)W21(z) = W11(z) (23)

From these equations, it can be concluded that W11(z) =
W22(z). Therefore, the above equations result in:

W 2
jj(z)−Wjj(z)−Wjk(z)Wkj(z) = 0 (24)

j = 1, 2, k = 1, 2, j 6= k

This 2nd-order equation expresses the condition on
complete source separation without signal distortion.
This constraint can be included in the learning pro-
cesses of the FF-BSS system in the time domain as
well as in the frequency domain.

5.2 Learning Algorithm with Constraint
in Time Domain

The conventional learning algorithm given by Eqs.(3),
(4) does not satisfy the condition given by Eq.(24).
Usually, only Eqs.(17) and (18) are approximately sat-
isfied. Equations (16) and (19) are not guaranteed.
Therefore, in general, signal distortion cannot be sup-
pressed.

The constraint given by Eq.(24) is taken into ac-
count in the learning process, as follows. Given W12(z)
and W21(z), the coefficients of Wjj(z) are obtained so
as to approximate the relation of Eq.(24).

The condition for the distortion free source separa-
tion is derived based on complete separation and signal
distortion free. However, the learning of the separation
block starts from an initial guess. Therefore, in the
early stage of the learning process, the signal sources
are not well separated. Taking this situation into ac-
count, the constraint of Eq.(24) is gradually imposed
as the learning process makes progress. The following
learning algorithm has been proposed.

wkj(n + 1, l) = wkj(n) + η{wkj(n)

−
Kw−1∑
o=0

2∑
p=1

φ(yk(n))yp(n− o + p)wkp(n, o)}(25)

wjj(n + 1, l) = (1− α)wjj(n + 1, l)
+αw̃jj(n + 1) (26)

w̃jj(n + 1) is determined so as to approximate the re-
lation of Eq.(24). α is usually set to a small positive
number.

5.3 Conventional Learning Algorithm
for Reducing Distortion

A learning algorithm for reducing distortion has been
proposed. The distance between the observed sig-
nals and the separated signals is added to the cost
function[4], as a penalty.

w(n + 1, l) = w(n, l)

− α

Kw−1∑
m=0

[diag(〈Φ(y(n))yT (n− l + m)〉

− 〈Φ(y(n))yT (n− l + m)〉
+ β(y(n)− x(n))yT (n− l + m)]w(n,m) (27)

ϕ(y(n)) =
1− e−y(n)

1 + e−y(n)
(28)

In this method, the output signals Yi(z) = Aii(z)Si(z)+
Aij(z)Sj(z) tend to approach to the observed signals
Xi(z) = Hii(z)Si(z) + Hij(z)Sj(z). Therefore, Yi(z)
may include the Sj(z) component. However, since
Si(z) and Sj(z) are statistically independent, Aii(z)
is able to approach to Hii(z) and Aij(z) is able to
approach to Hij(z). The former guarantees distor-
tion free, but the latter can disturb source separation.



Consequently, this algorithm might achieve a low sig-
nal distortion, but perform poor with respect to signal
source separation.

6 Source Separation and Signal
Distortion in FB-BSS Systems

There are two possible solutions for which a perfect
separation exist, as shown below:

(1) C21(z) =
H21(z)

H11(z)
C12(z) =

H12(z)

H22(z)
(29)

(2) C21(z) =
H22(z)

H12(z)
C12(z) =

H11(z)

H21(z)
(30)

It is assumed that the delay times of H11(z) and
H22(z) are shorter than those of H21(z) and H12(z).
This means that in Fig.2, the sensor of X1 is located
close to S1, and the sensor of X2 close to S2. From this
assumption, the solution in case (1) become a causal
system. On the other hand, the solution in case (2) is
noncausal.

When Cij(z) satisfy the separation conditions Eqs.
(29), the output signals can be given by:

Y1(z) = H11(z)S1(z) Y2(z) = H22(z)S2(z) (31)

They are exactly the same as the criteria of the signal
distortion discussed in Sec.4 Therefore, the FB-BSS
system has a unique solution, which satisfies source
separation as well as the signal distortion free simul-
taneously. Thus, in the FB-BSS system, if complete
signal separation is achieved, signal distortion free is
also automatically satisfied.

7 Simulation and Discussion

7.1 Simulation Conditions

The transfer functions of direct paths are shown in
Fig.3. The transfer functions of the cross paths are
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Figure 3: Impulse responses of H11(z) and H22(z).

related to the direct paths as Hjk(z) = 0.9z−1Hkk(z).
White signals, colored signals, created by 2nd-order
AR models, and speeches are used as sources. FIR
filters with 256 taps are used. The initial guess of
the separation block are W11(z) = W22(z) = 1 and
Wij(z) = 0, i 6= j, in the FF-BSS system, and C12(z) =
C21(z) = 1 in the FB-BSS system.

Source separation is evaluated by the following two
signal-to-interference ratios SIR1 and SIR2. Aki(z) is
a transfer function from the i-th source to the k-th out-
put. In this case, S1(z) and S2(z) are assumed to be
separated in Y1(z) and Y2(z), respectively. However,
this does not lose generarity.

σs1 =
1
2π

∫ π

−π

(|A11(ejω)|2 + |A22(ejω)|2)dω(32)

σi1 =
1
2π

∫ π

−π

(|A12(ejω)|2 + |A21(ejω)|2)dω(33)

SIR1 = 10 log10

σs1

σi1
(34)

σs2 =
1
2π

∫ π

−π

(|A11(ejω)S1(ejω)|2

+ |A22(ejω)S2(ejω)|2)dω (35)

σi2 =
1
2π

∫ π

−π

(|A12(ejω)S2(ejω)|2

+ |A21(ejω)S1(ejω)|2)dω (36)

SIR2 = 10 log10

σs2

σi2
(37)

7.2 White Signals

The learning curves of SIR1 are shown in Figs.4.
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Figure 4: Learning curves of SIR1 for white signals.
FF-BSS(1), (2) and (3) are trained following Eqs.(3)-
(4), Eqs.(25)-(26) and Eqs.(27)-(28), respectively.

The convergence speed of the FB-BSS system is
faster than those of the FF-BSS systems, and the FB-
BSS system is superior to the FF-BSS systems with re-
spect to the separation performance, that is the value
of SIR1. Among the FF-BSS systems, the FF-BSS
without distortion free(FF-BSS(1)) obtained the best
result. However, this result is caused by signal distor-
tion as will be discussed later. The proposed method(FF-
BSS(2)) is better than the conventional method(FF-
BSS(3)) regarding separation performance. Moreover,
the conventional method has already converged.

The evaluation measures are summarized in Table
1.

Regarding SIR1 and SIR2, the FB-BSS system
performed best. Regarding SD1a, which is the strictest
evaluation, the FB-BSS system is superior to the oth-
ers. In SD1b, which compares only amplitude responses,
the differences become small. However the FB-BSS



Table 1: Comparison of four different BSS systems
for white signals. FF-BSS(1), (2) and (3) are trained
following Eqs.(3)-(4), Eqs.(25)-(26) and Eqs.(27)-(28),
respectively.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

FF-BSS(1) 14.8 14.9 -4.72 -8.44 -4.77 -8.54

FF-BSS(2) 8.97 8.93 -14.9 -18.5 -14.9 -18.4

FF-BSS(3) 5.70 5.71 -12.7 -16.6 -12.7 -16.6

FB-BSS 17.5 18.6 -19.1 -22.3 -19.1 -22.1

system is still superior to the others. In SD2a and
SD2b evaluations, which compare only transfer func-
tions, almost no differences are observable. Therefore,
regarding signal distortion, it can be concluded that
the FB-BSS system is the best according to any eval-
uation measure. The signal distortion in the FF-BSS
system with distortion free constraint(FF-BSS(2)) and
the conventional FF-BSS for reducing distortion(FF-
BSS(3)) can be drastically improved compared to the
FF-BSS system without the constraint. However, the
conventional FF-BSS for reducing distortion is not good
regarding source separation.

As discussed in Sec.5.3, source separation can be
disturbed, because Aij(z) might approach Hij(z). This
thought is supported by the fact that the performance
values displayed in Table 2 for FF-BSS(3) are much
lower than the values for the other methods.

Table 2: Evaluations of Signal Distortion of the signal
that should be removed for white signals.

Methods SD1a SD1b SD2a SD2b

FF-BSS(1) 2.45 -1.23 2.42 -1.20

FF-BSS(2) -3.77 -10.0 -3.78 -9.98

FF-BSS(3) -10.4 -13.5 -10.3 -13.3

FB-BSS 2.27 -3.79 2.23 -3.59

Regarding SDxb,x = 1, 2, which compare only am-
plitude responses, the proposed method (FF-BSS(2))
has much lower values as expected. The cause might
be found in the fact that learning algorithm eliminates
the signals at the same rate for each frequency, because
the frequency band of the white signals are flat.

7.3 Colored Signals

Colored signals, whose frequency bands are not flat,
are used as source signals. The evaluation measures
are summarized in Table 3 and the evaluations of sig-
nal distortion of the signal that should be removed are
shown in Table 4.

Similar results as in the simulations using white sig-
nals are obtained regarding source separation as well
as signal distortion of outputs. Regarding evaluations
of signal distortion of the signal that should be re-
moved, the proposed method does not have values as
low as the values of the same method in the previous

Table 3: Comparison of four different BSS systems for
colored signals.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

FF-BSS(1) 7.07 9.49 -0.08 -2.76 -0.69 -4.99

FF-BSS(2) 4.07 8.05 -7.54 -10.1 -10.4 -13.2

FF-BSS(3) 2.20 4.49 -5.43 -7.80 -13.7 -16.5

FB-BSS 7.19 16.5 -12.4 -15.0 -10.4 -13.6

Table 4: Evaluations of Signal Distortion of the signal
that should be removed for colored signals.

Methods SD1a SD1b SD2a SD2b

FF-BSS(1) 1.93 -0.65 1.71 -0.99

FF-BSS(2) -0.59 -2.61 -2.85 -4.74

FF-BSS(3) -8.79 -11.1 -9.48 -12.2

FB-BSS 1.02 -1.43 -0.09 -4.08

experiment dealing with white signals. However, the
conventional method for reducing distortion has still
very low performance values similar to the previous
experiment.

7.4 Speech Signals

Speech signals, which are non-stationary and corre-
lated to each other are used as sources. The evaluation
measures are summarized in Table 5.

Table 5: Comparison of four different BSS systems for
speech signals.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

FF-BSS(1) 5.56 12.2 0.34 -2.70 0.57 -3.82

FF-BSS(2) 4.33 8.29 -7.05 -10.4 -15.4 -19.9

FF-BSS(3) 6.38 10.9 -10.3 -13.8 -14.5 -16.9

FB-BSS 9.24 14.1 -11.3 -14.6 -14.7 -17.3

The conventional method for reducing distortion
has good performance regarding source separation.

The criteria for the signal distortion, that is the
amplitude response of H11(z)S1(z) and H22(z)S2(z)
are shown in Fig.5. The spectra of the output signals
are shown in Figs.6, 7, 8 and 9.

In the FF-BSS system without a distortion free
constraint, the spectra are not similar to the criteria
shown in Fig.5. Since, the FF-BSS system has a de-
gree of freedom, the output spectra can be changed in a
way to make the output signals to be more statistically
independent. This distortion might result in a incor-
rect view of the source separation performance. On the
other hand, as shown in Fig.7 and 8, the spectra of the
FF-BSS system with any distortion free constraint are
drastically improved compared to the FF-BSS with-
out a distortion free constraint, and are similar to the
criteria.

The results of the FB-BSS support the discussion
of Sec.6.
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Figure 5: Spectrum of H11(z)S1(z) and H22(z)S2(z)
for speech signals.
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Figure 6: Spectrum of output signals y1(n) and y2(n)
in FF-BSS(1) for speech signals
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Figure 7: Spectrum of output signals y1(n) and y2(n)
in FF-BSS(2) for speech signals.
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Figure 8: Spectrum of output signals y1(n) and y2(n)
FF-BSS(3) in for speech signals.
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Figure 9: Spectrum of output signals y1(n) and y2(n)
in FB-BSS system for speech signals.

8 Conclusions

In this paper, source separation and signal distortion
in FF-BSS systems and FB-BSS systems have been an-
alyzed. A distortion free constraint has been proposed
for the FF-BSS system. Furthermore, the conventional
FF-BSS system for reducing distortion has difficul-
ties to obtain good separation performances, because
Aij(z) might approach Hij(z) . The FB-BSS system
has one unique solution, which satisfies source separa-
tion as well as the distortion free conditions simultane-
ously. The simulation results support our theoretical
analysis.
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