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ABSTRACT

Over the years, many improvements and refinements
to the backpropagation learning algorithm have been
reported. In this paper, a new adaptive penalty-based
learning extension for the backpropagation learning al-
gorithm and 1ts variants is proposed. The new method
initially puts pressure on artificial neural networks in
order to get all outputs for all training patterns in the
correct half of the output range, instead of focusing
on minimizing the difference between the target and
actual output values. The technique is easy to imple-
ment and computationally inexpensive. In this study,
the new approach has been applied to the backpropa-
gation learning algorithm as well as the RPROP learn-
ing algorithm and simulations have been performed.
The simulation results demonstrate the usefulness and
power of the new method.
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1 Introduction

Since the introduction of the backpropagation (BP)
[1] learning algorithm, it has proved to be efficient in
many applications. Presently, this gradient descent
method has emerged as one of the most well-known
and popular learning algorithms for Artificial Neural
Networks (ANNs). However, in various cases its con-
vergence speed often tends to be very slow and it often
yields suboptimal solutions.

As a result, much research has been focusing on im-
proving the BP learning algorithm and numerous new
algorithms and techniques have been proposed. Many
attempts to speed up training and to reduce conver-
gence to local minima have been made in the context of
dynamically adjusting the learning rate during train-
ing, including learning algorithms such as SAB [2] and
SuperSAB [3], Quickprop [4], and RPROP [5], [6].

Other directions that have been studied, include
the application of alternative cost functions. Squared-
error functions have been replaced by possible better
cost functions, such as the cross-entropy measure [7].
Furthermore, error functions have been extended with
extra terms to direct the search in the weight space
towards specific goals, such as the addition of noise
as in simulated annealing [8], [9] or the application of
penalties as in weight decay [10], [9].

In this paper, a new adaptive penalty-based exten-
sion for various objective functions is proposed. Penal-
ties are applied in order to put pressure on incorrect
binary outputs to get them initially into the right ball-
park, i.e. the correct half of the output range. The
penalties are dynamically adjusted during training to
reflect the difficulty of this task. Here, the new method
is applied to standard backpropagation as well as to
the effective RPROP learning algorithm. Simulations



have been performed on a number of problem instances
and the performance of the improved algorithms are
compared to their original counterparts. The superi-
ority of the new proposed method is demonstrated.

2 Motivation behind Develop-
ment of New Approach

During our simulations using artificial neural networks
in previous research projects, we experienced that once
all the binary outputs for all training patterns are in
the correct ballpark, the networks converge very fast
to a global minimum.

The reason behind this observation might be found
in the following. Intuitively, it can be expected that
networks will converge faster to a global minimumonce
all the extremes of the function represented by the
network are roughly at the same locations as the ex-
tremes of the function to be approximated, compared
to networks still having incorrect or missing extremes.
Networks having the extremes of the function to be ap-
proximated at the correct locations only need to adjust
the amplitude of the extremes, while networks having
incorrect or missing extremes need to make more rad-
ical modifications to their weight vector in order to
resolve the incorrect or missing extremes.

Consequently, considering networks having only bi-
nary output neurons, once all the outputs for all out-
put neurons and all training patterns are in the cor-
rect ballpark, it implies that the function represented
by the network has its extremes roughly at the same
locations as the function to be approximated! and the
network only needs to adjust the amplitude of the ex-
tremes.

As a result of our observation, we tried to develop
an algorithm that initially forces the network to get
all the outputs of the training patterns into the correct
ballpark, instead of mainly focusing on minimizing the
difference between the target and actual outputs as is
done in standard squared-error cost functions.

3 New Adaptive Penalty-Based
Learning Extension

3.1 Formal Description

In the backpropagation learning algorithm, the errors
of the output neurons are backpropagated through the
network during training. The error signal e; ,(n) of
output neuron i at epoch n for training pattern p, can
be defined by taking the difference between the target
output ¢; ,(n) and actual output o; ,(n):

eip(n) =t p(n) — 0ip(n) (1)

1The real function to be approximated is usually unknown,
but is represented by the training data.

In the new proposed method, for every output neu-
ron ¢ and every training pattern p, a penalty z; ,(n)
is created. The error backpropagated in the new algo-
rithm is given in the following equation:

cip (1) = zip(n) - eip(n) (2)
whereby the penalties are being updated after each
epoch as defined below:

zip(n+1)
max(z~ -z p(n), 1) if 0; p(n) is in
same ballpark

= astipn)  (3)

mary  otherwise

min(zt - z; p(n), z
and 2= < 1 and zt,2™% > 1. The initial penalties
z; p(0) are set to 1.

3.2 1Idea behind New Approach

The application of the new method results in the ad-
dition of penalties to the backpropagated error signal.
The task of these penalties 1s to put pressure on the
network to get all the outputs in the correct ballpark.

The penalties are dynamically adjusted as shown
in Eq. 3 in order to reflect the hardness of this task, by
assuming that the more difficult it is to get a certain
output for a certain pattern in the correct ballpark,
the more often it resides in the incorrect ballpark. Ev-
ery epoch an output for a certain pattern resides in
the incorrect ballpark, its corresponding penalty is in-
creased in order to put more pressure on the network
to get the output in the correct ballpark. Once an out-
put for a certain penalty reaches its correct ballpark,
its corresponding penalty is decreased.

Consequently, the new method implicitly provides
a mechanism to escape local minima. Whenever a net-
work converges towards a local minimum, penalties
will be increased for the outputs residing in the in-
correct ballpark during training. Once the penalties
have been raised to large enough values, the network
might ‘jump’ out of the local minimum. From a differ-
ent point of view, the error surface can be considered
dynamic.

4 Comparative Study

In order to give an indication of the performance of the
new proposed method in terms of convergence speed
and success rate, comparisons have been performed
between standard backpropagation and the RPROP
learning algorithm extended with the new penalty-
based method on one side and their original counter-
parts on the other side on various problem instances.



Test Problems
N-Bit Parity Problem

4.1
4.1.1

The N-bit parity problem is a generalization of the
‘exclusive-or’ (XOR) problem. The task is concerned
with detecting whether the number of activated input
bits is even or odd. In this study, N-bit input strings
composed of {—1,+1} are considered and the corre-
sponding target output values are defined as —1 and
+1 for input data consisting of an even, respectively
odd number of activated bits. The number of training
patterns is equal to 2.

In literature [4], the parity problem is often consid-
ered as an ill-suited benchmark problem to be solved
by ANNs. For most real world problems, it is highly
desirable that the applied ANNs generalize well on the
training data, i.e. similar input patterns are mapped to
similar output activations. However, the parity prob-
lem does not inherit this characteristic. A single ‘flip’
of a bit in the input string requires a complementary
classification.

Still, we have included this problem in our experi-
ments, because it is a very hard problem to be solved
by ANNs and we believe that the simulation results
will demonstrate the power of the new algorithm. In
addition, these results in combination with the results
reported for the other test problems resembling more
real world problems, will provide the reader with a
better understanding of the overall performance that
can be gained by applying the new proposed method.

4.1.2 M-N-M Encoder

The task of the M-N-M encoder problem is to learn
an auto-association between M different input/output
patterns. Each training pattern has one bit turned on,
i.e. set to one, while the remaining bits are set to zero.
The network applied to learn this auto-association is
a two-layered M-N-M feed-forward neural network.
The complexity of this task resides in the fact that the
number of hidden neurons is less than the number of
input and output neurons, i.e. N < M. Consequently,
the hidden neurons perform compression or encoding,
while the output neurons perform decompression or
decoding. Whenever N < logs M, the network is being
referred to as a ‘tight’ encoder.

4.1.3 Two Spirals Problem

The task of the two spirals problem is to learn to dis-
criminate between two sets of training points which lie
on two distinct spirals in the z-y plane. These spirals
coil three times around the origin and around one an-
other. The training data consists of 194 patterns and
here, the target values describing the two classes for
the two different spirals are within the set {—1, 1}.
The difficulty of the two spirals problem has been
demonstrated in many attempts to solve this problem
by applying backpropagation and many of its variants

over the years. One modification to the adapted neu-
ral networks that has often been applied in order to
be able to solve this problem, is the usage of short-
cut connections. By using shortcut connections, every
neuron is not only connected to all neurons in the last
previous layer as is in standard feed-forward neural
networks, but a neuron 1s connected to all neurons in
all previous layers.

4.2 Simulation Setup

The neural networks used in our simulations have been
developed using the Java Object-Oriented Neural En-
gine (Joone), an open source neural net framework
implemented in Java [11].

All the adapted neural networks used in our ex-
periments are multilayer feed-forward neural networks.
Here, backpropagation operates in online training
mode, i.e. weights are updated on a pattern-by-pattern
basis. The connection weights and biases for all net-
works were randomly initialized within the interval
[-1,1]. A constant value of 10000 was used for the
maximum penalty z™% in all simulations featuring
the new proposed method. Varying parts of the ap-
plied network configurations are summarized for each
experiment individually together with the simulation
results in the tables below. RPROP learning algorithm
parameters set to their default, previously proposed
values [5] are omitted from this network configuration
summary.

In addition, a constant value of 0.1 was added to
the derivative of the logistic and the hyperbolic tan-
gent activation function for all algorithms, to overcome
the ‘flat spot’ problem [4], i.e. the problem where train-
ing progresses very slowly, because the derivative of
the activation function approaches zero, caused by the
fact that an output of a neuron is close to one of its
asymptotic output values.

The learning of a binary task was considered com-
plete, if the ‘40-20-40’ criterion, described by Fahlman
[4], was fulfilled, i.e. all outputs of output neurons for
all training patterns are within the correct upper or
lower 40% of its output range. The maximum training
time was set to 20000 epochs for all experiments.

For each problem instance and network configura-
tion, 25 independent runs have been performed. The
number of successful runs and the average number of
epochs, neglecting unsuccessful runs, are reported.

4.3 Simulation Results

Tables? 1 and 2 show the simulation results for the
6-bit and 8-bit parity problem, respectively. The rows
representing experiments of the learning algorithms
extended with the new proposed method are indicated
with the ‘+ Extension’ text in the algorithm column.

277 is the learning rate used in BP, Ay, 4z is the maximum
update-value used in the RPROP learning algorithm



Table 1: Simulation Results for 6-Bit Parity Problem

6-Bit Parity
Algorithm | Epochs | Success | Settings
BP 9879 2/25 7 : 0.0005
7916 2/25 n : 0.001
RPROP 7492 4/25 Apaz @ 0.001
n : 0.0005
5953 25/25 | z7 : 0.9
2zt 1.05
n : 0.001
5522 24/25 | z7 : 0.8
2zt 1.05
n : 0.001
6270 21/25 | 27 : 0.9
BP + 2zt 1.01
Extension 7 : 0.001
3436 25/25 | 2z : 0.9
2zt 1.05
n : 0.001
6567 22/25 | 2z : 0.9
2t 1.1
n : 0.001
4695 25/25 | z7 : 0.95
2zt . 1.05
Apaz @ 0.001
7792 7/25 z= : 0.9
RPROP + 2zt 1.05
Extension Apmaz @ 0.001
7516 19/25 | z7 : 0.99
2zt . 1.05
Network structure : 6-6-1
Activation function . hyperbolic tangent

The low number of success rates for the backprop-
agation and RPROP learning algorithm indicate the
difficulty of this problem. The networks get easily
trapped in local minima. However, applying the new
proposed method resulted in an increase of the number
of successful runs by a magnitude. The new method
provides a way to escape local minima. Moreover, in
general the average number of epochs to convergence
was also greatly reduced by the new method.

Observing the results in greater detail, we see that
the parameters values z~ and zT of the new method
rather have some influence on the performance. Tun-
ing the parameters carefully can result in a very good
performance, but searching for an optimal parameter
set is usually considered a very time-consuming task.
However, less well tuned parameters still result in a
performance much better than the learning algorithms
without the proposed extension.

In comparison with backpropagation, the RPROP
learning algorithm extended with the new proposed
approach required a less dynamic error-surface, which
is expressed in the fact that the decremental penalty

Table 2: Simulation Results for 8-Bit Parity Problem

8-Bit Parity
Algorithm | Epochs | Success | Settings
7663 2/25 7 : 0.0005
BP
5961 3/25 7 : 0.001
RPROP - 0/25 Apaz - 0.001
n : 0.0005,
4931 23/25 | 2z : 0.9
BP + 2zt 1 1.05
Extension 7 : 0.001,
2807 20/25 | z7 : 0.9
2zt 1 1.05
Apaz ;- 0.001
E{;I:Iii: 10444 14/25 | z7 : 0.99
2zt 1 1.05
Network structure : 8-8-1
Actiwvation function . hyperbolic tangent

rate z~ was set very close to one in order to obtain
satisfactory results. The two main differences between
backpropagation and RPROP are a static learning rate
versus a dynamic learning rate and online training
mode versus batch mode. The RPROP learning algo-
rithm is an improvement of the backpropagation learn-
ing algorithm and it has proven its superiority in many
cases [5], [6]. In general, the RPROP learning algo-
rithm converges faster to global or local minima. As
a consequence, it can be expected that the RPROP
learning algorithm is more sensitive to, that is, re-
sponds faster to error-surface changes. Therefore, this
might be the reason that the RPROP learning algo-
rithm requires a less aggressive changing error-surface.
Tables 3, 4 and 5 show the results for the 8-2-8,
32-2-32 and 48-2-48 encoder problem, respectively.

Table 3: Simulation Results for 8-2-8 Encoder Problem

8-2-8 Encoder
Algorithm | Epochs | Success | Settings
BP - 0/25 n : 0.005
RPROP 99 25/25
n : 0.005
Ept+ . 4883 22/25 | z~ :0.9999
xtension A+ 101
RPROP + z7 : 0.9999
Extension M 25/25 2t :1.01
Network structure : 8-2-8
Activation function :  logistic

It can be easily noticed that the learning algo-
rithms extended with the new approach outperform
their original counterparts also on the encoder prob-
lem. For a large range of different learning rates, stan-



Table 4: Simulation Results for 32-2-32 Encoder Prob-
lem

32-2-32 Encoder
Algorithm | Epochs | Success | Settings
RPROP 3727 25/25
RPROP + z7 : 0.9999
Extension 2985 25/25 zt 1 1.01
Network structure : 32-2-32
Actwation function . logistic

Table 5: Simulation Results for 48-2-48 Encoder Prob-
lem

48-2-48 Encoder
Algorithm | Epochs | Success | Settings
RPROP 13914 14/25
RPROP + z7 : 0.9999
Extension 12170 25/25 2zt 1.01
Network structure : 48-2-48
Actiwation function . logistic

dard backpropagation was unable to find a solution
for the tight encoder problems. However, backpropa-
gation extended with the new method was still able to
find a solution for the 8-2-8 encoder in 88%. RPROP
easily finds a solution for the 8-2-8 and 32-2-32 en-
coders, however by applying the new method the av-
erage number of epochs to convergence was reduced.
For the 48-2-48 encoder problem, RPROP also experi-
enced difficulties and was unable to find a solution in
all runs, while by applying the new proposed method
in combination with the RPROP learning algorithm,
the networks converged to a solution in all runs.

Table 6 shows the simulation results of the two
spirals problem.

Again, the learning algorithms extended with the
new proposed method are superior to their original
counterparts. Although backpropagation as well as the
RPROP learning algorithm are able to find solutions,
the number of successful runs is greatly increased by
applying the new method and in general the average
number to convergence is decreased.

4.4 Extension parameters

It is often said that the design of a neural network is
more an art than a science in the sense that many of
the numerous factors involved in the design are indeed
the results of one’s own personal experience [12].
Also in the new proposed method two important
parameter values, namely z~ and zT, need to be de-
termined. The two parameters have a great influence
on the performance of the new method and are prob-

Table 6: Simulation Results for Two Spirals Problem

Two Spirals
Algorithm | Epochs | Success | Settings
14141 7/25 7 : 0.0005
BP
9838 9/25 7 : 0.001
RPROP 8964 16/25 | Az ¢ 0.001
n : 0.0005
11650 18/25 | z7 : 0.99
BP + 2zt 1.001
Extension 7 : 0.001
9005 19/25 | 27 : 0.99
2zt 1.001
Apaz @ 0.001
7179 23/25 | z= : 0.9999
RPROP + 2zt 1.001
Extension Apmaz @ 0.001
9259 25/25 | z7 : 0.99999
2zt 1.001
Network structure : 2-5-5-5-1 +
shortcut connections
Actiwation function :  hyperbolic tangent

lem dependent. The maximum penalty value, z"%",
has a rather small influence on the performance of the
learning algorithm, at least if it is set to a large enough
value.

Unfortunately, how to determine the decremental
and incremental penalty values remains an open prob-
lem. Choosing incorrect parameter values, especially
assigning a value too large to z%t, results in a too
dynamic error-surface and the network often drives
its weights into saturation. However, by assigning
values very close to one to z~ and zt, 2! < 1 and
2zt > 1, the error-surface will change very slowly, but
very smoothly. It is our experience that whenever
penalties reach the upper bound z™%" during train-
ing, the incremental penalty value zt needs to be de-
creased, or the decremental penalty value z~ needs
to be decreased, or both. We intent to research ways
to decide the decremental and incremental parameter
values in future research.

5 Concluding Remarks

A new adaptive penalty-based approach applicable as
an extension for squared-error functions in backprop-
agation and its variants is proposed. The new method
initially puts pressure on artificial neural network in
order to get all the outputs for all training patterns
into the correct ballpark, instead of mainly focusing
on minimizing the difference between the target and
actual outputs.

Simulations have been performed and the results
have demonstrated the usefulness of the proposed ap-



proach. By applying the new algorithm, the number
of successful runs can be greatly increased and the av-
erage number of epochs to convergence can be well re-
duced on various problem instances. The new method
is easy to implement and computationally inexpensive.

Future research will be directed towards learning
tasks consisting of patterns having continuous target
output values. We intent to investigate on how to de-
cide an appropriate border defining the ballparks for
real-values output patterns. Furthermore, how to de-
cide appropriate decremental and incremental penalty
values, i.e. values for 2~ and 2zt will also be a future
research project.
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